summaryrefslogtreecommitdiffstats
path: root/src/core
diff options
context:
space:
mode:
Diffstat (limited to 'src/core')
-rw-r--r--src/core/CMakeLists.txt2
-rw-r--r--src/core/core_timing_util.cpp15
-rw-r--r--src/core/core_timing_util.h3
-rw-r--r--src/core/host_timing.cpp206
-rw-r--r--src/core/host_timing.h160
5 files changed, 386 insertions, 0 deletions
diff --git a/src/core/CMakeLists.txt b/src/core/CMakeLists.txt
index cb9ced5c9..efbad628f 100644
--- a/src/core/CMakeLists.txt
+++ b/src/core/CMakeLists.txt
@@ -547,6 +547,8 @@ add_library(core STATIC
hle/service/vi/vi_u.h
hle/service/wlan/wlan.cpp
hle/service/wlan/wlan.h
+ host_timing.cpp
+ host_timing.h
loader/deconstructed_rom_directory.cpp
loader/deconstructed_rom_directory.h
loader/elf.cpp
diff --git a/src/core/core_timing_util.cpp b/src/core/core_timing_util.cpp
index de50d3b14..be34b26fe 100644
--- a/src/core/core_timing_util.cpp
+++ b/src/core/core_timing_util.cpp
@@ -49,6 +49,21 @@ s64 nsToCycles(std::chrono::nanoseconds ns) {
return (Hardware::BASE_CLOCK_RATE * ns.count()) / 1000000000;
}
+u64 msToClockCycles(std::chrono::milliseconds ns) {
+ const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
+ return Common::Divide128On32(temp, 1000).first;
+}
+
+u64 usToClockCycles(std::chrono::microseconds ns) {
+ const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
+ return Common::Divide128On32(temp, 1000000).first;
+}
+
+u64 nsToClockCycles(std::chrono::nanoseconds ns) {
+ const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
+ return Common::Divide128On32(temp, 1000000000).first;
+}
+
u64 CpuCyclesToClockCycles(u64 ticks) {
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
diff --git a/src/core/core_timing_util.h b/src/core/core_timing_util.h
index addc72b19..b3c58447d 100644
--- a/src/core/core_timing_util.h
+++ b/src/core/core_timing_util.h
@@ -13,6 +13,9 @@ namespace Core::Timing {
s64 msToCycles(std::chrono::milliseconds ms);
s64 usToCycles(std::chrono::microseconds us);
s64 nsToCycles(std::chrono::nanoseconds ns);
+u64 msToClockCycles(std::chrono::milliseconds ns);
+u64 usToClockCycles(std::chrono::microseconds ns);
+u64 nsToClockCycles(std::chrono::nanoseconds ns);
inline std::chrono::milliseconds CyclesToMs(s64 cycles) {
return std::chrono::milliseconds(cycles * 1000 / Hardware::BASE_CLOCK_RATE);
diff --git a/src/core/host_timing.cpp b/src/core/host_timing.cpp
new file mode 100644
index 000000000..2f40de1a1
--- /dev/null
+++ b/src/core/host_timing.cpp
@@ -0,0 +1,206 @@
+// Copyright 2020 yuzu Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#include "core/host_timing.h"
+
+#include <algorithm>
+#include <mutex>
+#include <string>
+#include <tuple>
+
+#include "common/assert.h"
+#include "core/core_timing_util.h"
+
+namespace Core::HostTiming {
+
+std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
+ return std::make_shared<EventType>(std::move(callback), std::move(name));
+}
+
+struct CoreTiming::Event {
+ u64 time;
+ u64 fifo_order;
+ u64 userdata;
+ std::weak_ptr<EventType> type;
+
+ // Sort by time, unless the times are the same, in which case sort by
+ // the order added to the queue
+ friend bool operator>(const Event& left, const Event& right) {
+ return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
+ }
+
+ friend bool operator<(const Event& left, const Event& right) {
+ return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
+ }
+};
+
+CoreTiming::CoreTiming() {
+ clock =
+ Common::CreateBestMatchingClock(Core::Hardware::BASE_CLOCK_RATE, Core::Hardware::CNTFREQ);
+}
+
+CoreTiming::~CoreTiming() = default;
+
+void CoreTiming::ThreadEntry(CoreTiming& instance) {
+ instance.ThreadLoop();
+}
+
+void CoreTiming::Initialize() {
+ event_fifo_id = 0;
+ const auto empty_timed_callback = [](u64, s64) {};
+ ev_lost = CreateEvent("_lost_event", empty_timed_callback);
+ timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
+}
+
+void CoreTiming::Shutdown() {
+ paused = true;
+ shutting_down = true;
+ event.Set();
+ timer_thread->join();
+ ClearPendingEvents();
+ timer_thread.reset();
+ has_started = false;
+}
+
+void CoreTiming::Pause(bool is_paused) {
+ paused = is_paused;
+}
+
+void CoreTiming::SyncPause(bool is_paused) {
+ if (is_paused == paused && paused_set == paused) {
+ return;
+ }
+ Pause(is_paused);
+ event.Set();
+ while (paused_set != is_paused)
+ ;
+}
+
+bool CoreTiming::IsRunning() const {
+ return !paused_set;
+}
+
+bool CoreTiming::HasPendingEvents() const {
+ return !(wait_set && event_queue.empty());
+}
+
+void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
+ u64 userdata) {
+ basic_lock.lock();
+ const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);
+
+ event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
+
+ std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
+ basic_lock.unlock();
+ event.Set();
+}
+
+void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
+ basic_lock.lock();
+ const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
+ return e.type.lock().get() == event_type.get() && e.userdata == userdata;
+ });
+
+ // Removing random items breaks the invariant so we have to re-establish it.
+ if (itr != event_queue.end()) {
+ event_queue.erase(itr, event_queue.end());
+ std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
+ }
+ basic_lock.unlock();
+}
+
+void CoreTiming::AddTicks(std::size_t core_index, u64 ticks) {
+ ticks_count[core_index] += ticks;
+}
+
+void CoreTiming::ResetTicks(std::size_t core_index) {
+ ticks_count[core_index] = 0;
+}
+
+u64 CoreTiming::GetCPUTicks() const {
+ return clock->GetCPUCycles();
+}
+
+u64 CoreTiming::GetClockTicks() const {
+ return clock->GetClockCycles();
+}
+
+void CoreTiming::ClearPendingEvents() {
+ event_queue.clear();
+}
+
+void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
+ basic_lock.lock();
+
+ const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
+ return e.type.lock().get() == event_type.get();
+ });
+
+ // Removing random items breaks the invariant so we have to re-establish it.
+ if (itr != event_queue.end()) {
+ event_queue.erase(itr, event_queue.end());
+ std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
+ }
+ basic_lock.unlock();
+}
+
+std::optional<u64> CoreTiming::Advance() {
+ advance_lock.lock();
+ basic_lock.lock();
+ global_timer = GetGlobalTimeNs().count();
+
+ while (!event_queue.empty() && event_queue.front().time <= global_timer) {
+ Event evt = std::move(event_queue.front());
+ std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
+ event_queue.pop_back();
+ basic_lock.unlock();
+
+ if (auto event_type{evt.type.lock()}) {
+ event_type->callback(evt.userdata, global_timer - evt.time);
+ }
+
+ basic_lock.lock();
+ }
+
+ if (!event_queue.empty()) {
+ const u64 next_time = event_queue.front().time - global_timer;
+ basic_lock.unlock();
+ advance_lock.unlock();
+ return next_time;
+ } else {
+ basic_lock.unlock();
+ advance_lock.unlock();
+ return std::nullopt;
+ }
+}
+
+void CoreTiming::ThreadLoop() {
+ has_started = true;
+ while (!shutting_down) {
+ while (!paused) {
+ paused_set = false;
+ const auto next_time = Advance();
+ if (next_time) {
+ std::chrono::nanoseconds next_time_ns = std::chrono::nanoseconds(*next_time);
+ event.WaitFor(next_time_ns);
+ } else {
+ wait_set = true;
+ event.Wait();
+ }
+ wait_set = false;
+ }
+ paused_set = true;
+ }
+}
+
+std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
+ return clock->GetTimeNS();
+}
+
+std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
+ return clock->GetTimeUS();
+}
+
+} // namespace Core::HostTiming
diff --git a/src/core/host_timing.h b/src/core/host_timing.h
new file mode 100644
index 000000000..be6b68d7c
--- /dev/null
+++ b/src/core/host_timing.h
@@ -0,0 +1,160 @@
+// Copyright 2020 yuzu Emulator Project
+// Licensed under GPLv2 or any later version
+// Refer to the license.txt file included.
+
+#pragma once
+
+#include <atomic>
+#include <chrono>
+#include <functional>
+#include <memory>
+#include <mutex>
+#include <optional>
+#include <string>
+#include <thread>
+#include <vector>
+
+#include "common/common_types.h"
+#include "common/spin_lock.h"
+#include "common/thread.h"
+#include "common/threadsafe_queue.h"
+#include "common/wall_clock.h"
+#include "core/hardware_properties.h"
+
+namespace Core::HostTiming {
+
+/// A callback that may be scheduled for a particular core timing event.
+using TimedCallback = std::function<void(u64 userdata, s64 cycles_late)>;
+
+/// Contains the characteristics of a particular event.
+struct EventType {
+ EventType(TimedCallback&& callback, std::string&& name)
+ : callback{std::move(callback)}, name{std::move(name)} {}
+
+ /// The event's callback function.
+ TimedCallback callback;
+ /// A pointer to the name of the event.
+ const std::string name;
+};
+
+/**
+ * This is a system to schedule events into the emulated machine's future. Time is measured
+ * in main CPU clock cycles.
+ *
+ * To schedule an event, you first have to register its type. This is where you pass in the
+ * callback. You then schedule events using the type id you get back.
+ *
+ * The int cyclesLate that the callbacks get is how many cycles late it was.
+ * So to schedule a new event on a regular basis:
+ * inside callback:
+ * ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
+ */
+class CoreTiming {
+public:
+ CoreTiming();
+ ~CoreTiming();
+
+ CoreTiming(const CoreTiming&) = delete;
+ CoreTiming(CoreTiming&&) = delete;
+
+ CoreTiming& operator=(const CoreTiming&) = delete;
+ CoreTiming& operator=(CoreTiming&&) = delete;
+
+ /// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
+ /// required to end slice - 1 and start slice 0 before the first cycle of code is executed.
+ void Initialize();
+
+ /// Tears down all timing related functionality.
+ void Shutdown();
+
+ /// Pauses/Unpauses the execution of the timer thread.
+ void Pause(bool is_paused);
+
+ /// Pauses/Unpauses the execution of the timer thread and waits until paused.
+ void SyncPause(bool is_paused);
+
+ /// Checks if core timing is running.
+ bool IsRunning() const;
+
+ /// Checks if the timer thread has started.
+ bool HasStarted() const {
+ return has_started;
+ }
+
+ /// Checks if there are any pending time events.
+ bool HasPendingEvents() const;
+
+ /// Schedules an event in core timing
+ void ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
+ u64 userdata = 0);
+
+ void UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata);
+
+ /// We only permit one event of each type in the queue at a time.
+ void RemoveEvent(const std::shared_ptr<EventType>& event_type);
+
+ void AddTicks(std::size_t core_index, u64 ticks);
+
+ void ResetTicks(std::size_t core_index);
+
+ /// Returns current time in emulated CPU cycles
+ u64 GetCPUTicks() const;
+
+ /// Returns current time in emulated in Clock cycles
+ u64 GetClockTicks() const;
+
+ /// Returns current time in microseconds.
+ std::chrono::microseconds GetGlobalTimeUs() const;
+
+ /// Returns current time in nanoseconds.
+ std::chrono::nanoseconds GetGlobalTimeNs() const;
+
+ /// Checks for events manually and returns time in nanoseconds for next event, threadsafe.
+ std::optional<u64> Advance();
+
+private:
+ struct Event;
+
+ /// Clear all pending events. This should ONLY be done on exit.
+ void ClearPendingEvents();
+
+ static void ThreadEntry(CoreTiming& instance);
+ void ThreadLoop();
+
+ std::unique_ptr<Common::WallClock> clock;
+
+ u64 global_timer = 0;
+
+ std::chrono::nanoseconds start_point;
+
+ // The queue is a min-heap using std::make_heap/push_heap/pop_heap.
+ // We don't use std::priority_queue because we need to be able to serialize, unserialize and
+ // erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
+ // accomodated by the standard adaptor class.
+ std::vector<Event> event_queue;
+ u64 event_fifo_id = 0;
+
+ std::shared_ptr<EventType> ev_lost;
+ Common::Event event{};
+ Common::SpinLock basic_lock{};
+ Common::SpinLock advance_lock{};
+ std::unique_ptr<std::thread> timer_thread;
+ std::atomic<bool> paused{};
+ std::atomic<bool> paused_set{};
+ std::atomic<bool> wait_set{};
+ std::atomic<bool> shutting_down{};
+ std::atomic<bool> has_started{};
+
+ std::array<std::atomic<u64>, Core::Hardware::NUM_CPU_CORES> ticks_count{};
+};
+
+/// Creates a core timing event with the given name and callback.
+///
+/// @param name The name of the core timing event to create.
+/// @param callback The callback to execute for the event.
+///
+/// @returns An EventType instance representing the created event.
+///
+std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback);
+
+} // namespace Core::HostTiming