diff options
Diffstat (limited to 'src/video_core')
-rw-r--r-- | src/video_core/clipper.cpp | 84 | ||||
-rw-r--r-- | src/video_core/command_processor.cpp | 32 | ||||
-rw-r--r-- | src/video_core/pica.h | 24 | ||||
-rw-r--r-- | src/video_core/rasterizer.cpp | 252 | ||||
-rw-r--r-- | src/video_core/vertex_shader.cpp | 50 |
5 files changed, 263 insertions, 179 deletions
diff --git a/src/video_core/clipper.cpp b/src/video_core/clipper.cpp index 1744066ba..ba3876a76 100644 --- a/src/video_core/clipper.cpp +++ b/src/video_core/clipper.cpp @@ -15,30 +15,18 @@ namespace Clipper { struct ClippingEdge { public: - enum Type { - POS_X = 0, - NEG_X = 1, - POS_Y = 2, - NEG_Y = 3, - POS_Z = 4, - NEG_Z = 5, - }; - - ClippingEdge(Type type, float24 position) : type(type), pos(position) {} + ClippingEdge(Math::Vec4<float24> coeffs, + Math::Vec4<float24> bias = Math::Vec4<float24>(float24::FromFloat32(0), + float24::FromFloat32(0), + float24::FromFloat32(0), + float24::FromFloat32(0))) + : coeffs(coeffs), + bias(bias) + { + } bool IsInside(const OutputVertex& vertex) const { - switch (type) { - case POS_X: return vertex.pos.x <= pos * vertex.pos.w; - case NEG_X: return vertex.pos.x >= pos * vertex.pos.w; - case POS_Y: return vertex.pos.y <= pos * vertex.pos.w; - case NEG_Y: return vertex.pos.y >= pos * vertex.pos.w; - - // TODO: Check z compares ... should be 0..1 instead? - case POS_Z: return vertex.pos.z <= pos * vertex.pos.w; - - default: - case NEG_Z: return vertex.pos.z >= pos * vertex.pos.w; - } + return Math::Dot(vertex.pos + bias, coeffs) <= float24::FromFloat32(0); } bool IsOutSide(const OutputVertex& vertex) const { @@ -46,31 +34,17 @@ public: } OutputVertex GetIntersection(const OutputVertex& v0, const OutputVertex& v1) const { - auto dotpr = [this](const OutputVertex& vtx) { - switch (type) { - case POS_X: return vtx.pos.x - vtx.pos.w; - case NEG_X: return -vtx.pos.x - vtx.pos.w; - case POS_Y: return vtx.pos.y - vtx.pos.w; - case NEG_Y: return -vtx.pos.y - vtx.pos.w; - - // TODO: Verify z clipping - case POS_Z: return vtx.pos.z - vtx.pos.w; - - default: - case NEG_Z: return -vtx.pos.w; - } - }; - - float24 dp = dotpr(v0); - float24 dp_prev = dotpr(v1); + float24 dp = Math::Dot(v0.pos + bias, coeffs); + float24 dp_prev = Math::Dot(v1.pos + bias, coeffs); float24 factor = dp_prev / (dp_prev - dp); return OutputVertex::Lerp(factor, v0, v1); } private: - Type type; float24 pos; + Math::Vec4<float24> coeffs; + Math::Vec4<float24> bias; }; static void InitScreenCoordinates(OutputVertex& vtx) @@ -98,10 +72,9 @@ static void InitScreenCoordinates(OutputVertex& vtx) vtx.tc2 *= inv_w; vtx.pos.w = inv_w; - // TODO: Not sure why the viewport width needs to be divided by 2 but the viewport height does not vtx.screenpos[0] = (vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x; vtx.screenpos[1] = (vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y; - vtx.screenpos[2] = viewport.offset_z - vtx.pos.z * inv_w * viewport.zscale; + vtx.screenpos[2] = viewport.offset_z + vtx.pos.z * inv_w * viewport.zscale; } void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { @@ -117,14 +90,29 @@ void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) { auto* output_list = &buffer_a; auto* input_list = &buffer_b; + // NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value. + // TODO: Not sure if this is a valid approach. Also should probably instead use the smallest + // epsilon possible within float24 accuracy. + static const float24 EPSILON = float24::FromFloat32(0.00001); + static const float24 f0 = float24::FromFloat32(0.0); + static const float24 f1 = float24::FromFloat32(1.0); + static const std::array<ClippingEdge, 7> clipping_edges = {{ + { Math::MakeVec( f1, f0, f0, -f1) }, // x = +w + { Math::MakeVec(-f1, f0, f0, -f1) }, // x = -w + { Math::MakeVec( f0, f1, f0, -f1) }, // y = +w + { Math::MakeVec( f0, -f1, f0, -f1) }, // y = -w + { Math::MakeVec( f0, f0, f1, f0) }, // z = 0 + { Math::MakeVec( f0, f0, -f1, -f1) }, // z = -w + { Math::MakeVec( f0, f0, f0, -f1), Math::Vec4<float24>(f0, f0, f0, EPSILON) }, // w = EPSILON + }}; + + // TODO: If one vertex lies outside one of the depth clipping planes, some platforms (e.g. Wii) + // drop the whole primitive instead of clipping the primitive properly. We should test if + // this happens on the 3DS, too. + // Simple implementation of the Sutherland-Hodgman clipping algorithm. // TODO: Make this less inefficient (currently lots of useless buffering overhead happens here) - for (auto edge : { ClippingEdge(ClippingEdge::POS_X, float24::FromFloat32(+1.0)), - ClippingEdge(ClippingEdge::NEG_X, float24::FromFloat32(-1.0)), - ClippingEdge(ClippingEdge::POS_Y, float24::FromFloat32(+1.0)), - ClippingEdge(ClippingEdge::NEG_Y, float24::FromFloat32(-1.0)), - ClippingEdge(ClippingEdge::POS_Z, float24::FromFloat32(+1.0)), - ClippingEdge(ClippingEdge::NEG_Z, float24::FromFloat32(-1.0)) }) { + for (auto edge : clipping_edges) { std::swap(input_list, output_list); output_list->clear(); diff --git a/src/video_core/command_processor.cpp b/src/video_core/command_processor.cpp index 0d9f4ba66..586ad62b6 100644 --- a/src/video_core/command_processor.cpp +++ b/src/video_core/command_processor.cpp @@ -2,6 +2,8 @@ // Licensed under GPLv2 or any later version // Refer to the license.txt file included. +#include <boost/range/algorithm/fill.hpp> + #include "clipper.h" #include "command_processor.h" #include "math.h" @@ -23,10 +25,6 @@ static int float_regs_counter = 0; static u32 uniform_write_buffer[4]; -// Used for VSLoadProgramData and VSLoadSwizzleData -static u32 vs_binary_write_offset = 0; -static u32 vs_swizzle_write_offset = 0; - static inline void WritePicaReg(u32 id, u32 value, u32 mask) { if (id >= registers.NumIds()) @@ -65,10 +63,14 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { // Information about internal vertex attributes u32 vertex_attribute_sources[16]; - std::fill(vertex_attribute_sources, &vertex_attribute_sources[16], 0xdeadbeef); + boost::fill(vertex_attribute_sources, 0xdeadbeef); u32 vertex_attribute_strides[16]; u32 vertex_attribute_formats[16]; - u32 vertex_attribute_elements[16]; + + // HACK: Initialize vertex_attribute_elements to zero to prevent infinite loops below. + // This is one of the hacks required to deal with uninitalized vertex attributes. + // TODO: Fix this properly. + u32 vertex_attribute_elements[16] = {}; u32 vertex_attribute_element_size[16]; // Setup attribute data from loaders @@ -252,11 +254,6 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { break; } - // Seems to be used to reset the write pointer for VSLoadProgramData - case PICA_REG_INDEX(vs_program.begin_load): - vs_binary_write_offset = 0; - break; - // Load shader program code case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[0], 0x2cc): case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[1], 0x2cd): @@ -267,16 +264,11 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[6], 0x2d2): case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[7], 0x2d3): { - VertexShader::SubmitShaderMemoryChange(vs_binary_write_offset, value); - vs_binary_write_offset++; + VertexShader::SubmitShaderMemoryChange(registers.vs_program.offset, value); + registers.vs_program.offset++; break; } - // Seems to be used to reset the write pointer for VSLoadSwizzleData - case PICA_REG_INDEX(vs_swizzle_patterns.begin_load): - vs_swizzle_write_offset = 0; - break; - // Load swizzle pattern data case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[0], 0x2d6): case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[1], 0x2d7): @@ -287,8 +279,8 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) { case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[6], 0x2dc): case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[7], 0x2dd): { - VertexShader::SubmitSwizzleDataChange(vs_swizzle_write_offset, value); - vs_swizzle_write_offset++; + VertexShader::SubmitSwizzleDataChange(registers.vs_swizzle_patterns.offset, value); + registers.vs_swizzle_patterns.offset++; break; } diff --git a/src/video_core/pica.h b/src/video_core/pica.h index 9c1a12dc8..e4a5ef78e 100644 --- a/src/video_core/pica.h +++ b/src/video_core/pica.h @@ -118,8 +118,9 @@ struct Regs { struct TextureConfig { enum WrapMode : u32 { - ClampToEdge = 0, - Repeat = 2, + ClampToEdge = 0, + Repeat = 2, + MirroredRepeat = 3, }; INSERT_PADDING_WORDS(0x1); @@ -131,7 +132,7 @@ struct Regs { union { BitField< 8, 2, WrapMode> wrap_s; - BitField<11, 2, WrapMode> wrap_t; + BitField<12, 2, WrapMode> wrap_t; }; INSERT_PADDING_WORDS(0x1); @@ -223,6 +224,8 @@ struct Regs { struct TevStageConfig { enum class Source : u32 { PrimaryColor = 0x0, + PrimaryFragmentColor = 0x1, + Texture0 = 0x3, Texture1 = 0x4, Texture2 = 0x5, @@ -265,6 +268,9 @@ struct Regs { AddSigned = 3, Lerp = 4, Subtract = 5, + + MultiplyThenAdd = 8, + AddThenMultiply = 9, }; union { @@ -337,7 +343,7 @@ struct Regs { }; union { - enum BlendEquation : u32 { + enum class BlendEquation : u32 { Add = 0, Subtract = 1, ReverseSubtract = 2, @@ -421,7 +427,7 @@ struct Regs { INSERT_PADDING_WORDS(0x6); u32 depth_format; - u32 color_format; + BitField<16, 3, u32> color_format; INSERT_PADDING_WORDS(0x4); @@ -678,7 +684,9 @@ struct Regs { INSERT_PADDING_WORDS(0x2); struct { - u32 begin_load; + // Offset of the next instruction to write code to. + // Incremented with each instruction write. + u32 offset; // Writing to these registers sets the "current" word in the shader program. // TODO: It's not clear how the hardware stores what the "current" word is. @@ -690,7 +698,9 @@ struct Regs { // This register group is used to load an internal table of swizzling patterns, // which are indexed by each shader instruction to specify vector component swizzling. struct { - u32 begin_load; + // Offset of the next swizzle pattern to write code to. + // Incremented with each instruction write. + u32 offset; // Writing to these registers sets the "current" swizzle pattern in the table. // TODO: It's not clear how the hardware stores what the "current" swizzle pattern is. diff --git a/src/video_core/rasterizer.cpp b/src/video_core/rasterizer.cpp index 3faa10153..94873f406 100644 --- a/src/video_core/rasterizer.cpp +++ b/src/video_core/rasterizer.cpp @@ -5,6 +5,7 @@ #include <algorithm> #include "common/common_types.h" +#include "common/math_util.h" #include "math.h" #include "pica.h" @@ -20,16 +21,31 @@ namespace Rasterizer { static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) { const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); u32* color_buffer = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr))); - u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); - // Assuming RGBA8 format until actual framebuffer format handling is implemented - *(color_buffer + x + y * registers.framebuffer.GetWidth()) = value; + // Similarly to textures, the render framebuffer is laid out from bottom to top, too. + // NOTE: The framebuffer height register contains the actual FB height minus one. + y = (registers.framebuffer.height - y); + + switch (registers.framebuffer.color_format) { + case registers.framebuffer.RGBA8: + { + u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b(); + *(color_buffer + x + y * registers.framebuffer.GetWidth()) = value; + break; + } + + default: + LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format); + UNIMPLEMENTED(); + } } static const Math::Vec4<u8> GetPixel(int x, int y) { const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress(); u32* color_buffer_u32 = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr))); + y = (registers.framebuffer.height - y); + u32 value = *(color_buffer_u32 + x + y * registers.framebuffer.GetWidth()); Math::Vec4<u8> ret; ret.a() = value >> 24; @@ -43,6 +59,8 @@ static u32 GetDepth(int x, int y) { const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr))); + y = (registers.framebuffer.height - y); + // Assuming 16-bit depth buffer format until actual format handling is implemented return *(depth_buffer + x + y * registers.framebuffer.GetWidth()); } @@ -51,6 +69,8 @@ static void SetDepth(int x, int y, u16 value) { const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress(); u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr))); + y = (registers.framebuffer.height - y); + // Assuming 16-bit depth buffer format until actual format handling is implemented *(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value; } @@ -90,30 +110,43 @@ static int SignedArea (const Math::Vec2<Fix12P4>& vtx1, return Math::Cross(vec1, vec2).z; }; -void ProcessTriangle(const VertexShader::OutputVertex& v0, - const VertexShader::OutputVertex& v1, - const VertexShader::OutputVertex& v2) +/** + * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing + * culling via recursion. + */ +static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0, + const VertexShader::OutputVertex& v1, + const VertexShader::OutputVertex& v2, + bool reversed = false) { // vertex positions in rasterizer coordinates - auto FloatToFix = [](float24 flt) { - return Fix12P4(static_cast<unsigned short>(flt.ToFloat32() * 16.0f)); - }; - auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) { - return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; - }; + static auto FloatToFix = [](float24 flt) { + // TODO: Rounding here is necessary to prevent garbage pixels at + // triangle borders. Is it that the correct solution, though? + return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f))); + }; + static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) { + return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; + }; Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos), ScreenToRasterizerCoordinates(v1.screenpos), ScreenToRasterizerCoordinates(v2.screenpos) }; - if (registers.cull_mode == Regs::CullMode::KeepClockWise) { - // Reverse vertex order and use the CCW code path. - std::swap(vtxpos[1], vtxpos[2]); - } + if (registers.cull_mode == Regs::CullMode::KeepAll) { + // Make sure we always end up with a triangle wound counter-clockwise + if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { + ProcessTriangleInternal(v0, v2, v1, true); + return; + } + } else { + if (!reversed && registers.cull_mode == Regs::CullMode::KeepClockWise) { + // Reverse vertex order and use the CCW code path. + ProcessTriangleInternal(v0, v2, v1, true); + return; + } - if (registers.cull_mode != Regs::CullMode::KeepAll) { // Cull away triangles which are wound clockwise. - // TODO: A check for degenerate triangles ("== 0") should be considered for CullMode::KeepAll if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) return; } @@ -155,9 +188,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, auto textures = registers.GetTextures(); auto tev_stages = registers.GetTevStages(); + // Enter rasterization loop, starting at the center of the topleft bounding box corner. // TODO: Not sure if looping through x first might be faster - for (u16 y = min_y; y < max_y; y += 0x10) { - for (u16 x = min_x; x < max_x; x += 0x10) { + for (u16 y = min_y + 8; y < max_y; y += 0x10) { + for (u16 x = min_x + 8; x < max_x; x += 0x10) { // Calculate the barycentric coordinates w0, w1 and w2 int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); @@ -220,7 +254,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32(); int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32(); - auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) { + static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) { switch (mode) { case Regs::TextureConfig::ClampToEdge: val = std::max(val, 0); @@ -228,7 +262,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, return val; case Regs::TextureConfig::Repeat: - return (int)(((unsigned)val) % size); + return (int)((unsigned)val % size); + + case Regs::TextureConfig::MirroredRepeat: + { + int val = (int)((unsigned)val % (2 * size)); + if (val >= size) + val = 2 * size - 1 - val; + return val; + } default: LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x\n", (int)mode); @@ -236,6 +278,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, return 0; } }; + + // Textures are laid out from bottom to top, hence we invert the t coordinate. + // NOTE: This may not be the right place for the inversion. + // TODO: Check if this applies to ETC textures, too. s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width); t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); @@ -262,7 +308,9 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, auto GetSource = [&](Source source) -> Math::Vec4<u8> { switch (source) { + // TODO: What's the difference between these two? case Source::PrimaryColor: + case Source::PrimaryFragmentColor: return primary_color; case Source::Texture0: @@ -378,6 +426,25 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, return result.Cast<u8>(); } + case Operation::MultiplyThenAdd: + { + auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255; + result.r() = std::min(255, result.r()); + result.g() = std::min(255, result.g()); + result.b() = std::min(255, result.b()); + return result.Cast<u8>(); + } + + case Operation::AddThenMultiply: + { + auto result = input[0] + input[1]; + result.r() = std::min(255, result.r()); + result.g() = std::min(255, result.g()); + result.b() = std::min(255, result.b()); + result = (result * input[2].Cast<int>()) / 255; + return result.Cast<u8>(); + } + default: LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op); UNIMPLEMENTED(); @@ -402,6 +469,12 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, case Operation::Subtract: return std::max(0, (int)input[0] - (int)input[1]); + case Operation::MultiplyThenAdd: + return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255); + + case Operation::AddThenMultiply: + return (std::min(255, (input[0] + input[1])) * input[2]) / 255; + default: LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op); UNIMPLEMENTED(); @@ -475,7 +548,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, // TODO: Does depth indeed only get written even if depth testing is enabled? if (registers.output_merger.depth_test_enable) { - u16 z = (u16)(-(v0.screenpos[2].ToFloat32() * w0 + + u16 z = (u16)((v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum); u16 ref_z = GetDepth(x >> 4, y >> 4); @@ -524,6 +597,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, } auto dest = GetPixel(x >> 4, y >> 4); + Math::Vec4<u8> blend_output = combiner_output; if (registers.output_merger.alphablend_enable) { auto params = registers.output_merger.alpha_blending; @@ -574,7 +648,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, default: LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor); - exit(0); + UNIMPLEMENTED(); break; } }; @@ -607,86 +681,78 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, default: LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor); - exit(0); + UNIMPLEMENTED(); + break; + } + }; + + using BlendEquation = decltype(params)::BlendEquation; + static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor, + const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor, + BlendEquation equation) { + Math::Vec4<int> result; + + auto src_result = (src * srcfactor).Cast<int>(); + auto dst_result = (dest * destfactor).Cast<int>(); + + switch (equation) { + case BlendEquation::Add: + result = (src_result + dst_result) / 255; break; + + case BlendEquation::Subtract: + result = (src_result - dst_result) / 255; + break; + + case BlendEquation::ReverseSubtract: + result = (dst_result - src_result) / 255; + break; + + // TODO: How do these two actually work? + // OpenGL doesn't include the blend factors in the min/max computations, + // but is this what the 3DS actually does? + case BlendEquation::Min: + result.r() = std::min(src.r(), dest.r()); + result.g() = std::min(src.g(), dest.g()); + result.b() = std::min(src.b(), dest.b()); + result.a() = std::min(src.a(), dest.a()); + break; + + case BlendEquation::Max: + result.r() = std::max(src.r(), dest.r()); + result.g() = std::max(src.g(), dest.g()); + result.b() = std::max(src.b(), dest.b()); + result.a() = std::max(src.a(), dest.a()); + break; + + default: + LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", equation); + UNIMPLEMENTED(); } + + return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255), + MathUtil::Clamp(result.g(), 0, 255), + MathUtil::Clamp(result.b(), 0, 255), + MathUtil::Clamp(result.a(), 0, 255)); }; auto srcfactor = Math::MakeVec(LookupFactorRGB(params.factor_source_rgb), LookupFactorA(params.factor_source_a)); auto dstfactor = Math::MakeVec(LookupFactorRGB(params.factor_dest_rgb), LookupFactorA(params.factor_dest_a)); - - auto src_result = (combiner_output * srcfactor).Cast<int>(); - auto dst_result = (dest * dstfactor).Cast<int>(); - - switch (params.blend_equation_rgb) { - case params.Add: - { - auto result = (src_result + dst_result) / 255; - result.r() = std::min(255, result.r()); - result.g() = std::min(255, result.g()); - result.b() = std::min(255, result.b()); - combiner_output = result.Cast<u8>(); - break; - } - - case params.Subtract: - { - auto result = (src_result - dst_result) / 255; - result.r() = std::max(0, result.r()); - result.g() = std::max(0, result.g()); - result.b() = std::max(0, result.b()); - combiner_output = result.Cast<u8>(); - break; - } - - case params.ReverseSubtract: - { - auto result = (dst_result - src_result) / 255; - result.r() = std::max(0, result.r()); - result.g() = std::max(0, result.g()); - result.b() = std::max(0, result.b()); - combiner_output = result.Cast<u8>(); - break; - } - - case params.Min: - { - // TODO: GL spec says to do it without the factors, but is this what the 3DS does? - Math::Vec4<int> result; - result.r() = std::min(combiner_output.r(),dest.r()); - result.g() = std::min(combiner_output.g(),dest.g()); - result.b() = std::min(combiner_output.b(),dest.b()); - combiner_output = result.Cast<u8>(); - break; - } - - case params.Max: - { - // TODO: GL spec says to do it without the factors, but is this what the 3DS does? - Math::Vec4<int> result; - result.r() = std::max(combiner_output.r(),dest.r()); - result.g() = std::max(combiner_output.g(),dest.g()); - result.b() = std::max(combiner_output.b(),dest.b()); - combiner_output = result.Cast<u8>(); - break; - } - default: - LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", params.blend_equation_rgb.Value()); - exit(0); - } + blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb); + blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a(); } else { LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op); - exit(0); + UNIMPLEMENTED(); } const Math::Vec4<u8> result = { - registers.output_merger.red_enable ? combiner_output.r() : dest.r(), - registers.output_merger.green_enable ? combiner_output.g() : dest.g(), - registers.output_merger.blue_enable ? combiner_output.b() : dest.b(), - registers.output_merger.alpha_enable ? combiner_output.a() : dest.a() + registers.output_merger.red_enable ? blend_output.r() : dest.r(), + registers.output_merger.green_enable ? blend_output.g() : dest.g(), + registers.output_merger.blue_enable ? blend_output.b() : dest.b(), + registers.output_merger.alpha_enable ? blend_output.a() : dest.a() }; DrawPixel(x >> 4, y >> 4, result); @@ -694,6 +760,12 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0, } } +void ProcessTriangle(const VertexShader::OutputVertex& v0, + const VertexShader::OutputVertex& v1, + const VertexShader::OutputVertex& v2) { + ProcessTriangleInternal(v0, v1, v2); +} + } // namespace Rasterizer } // namespace Pica diff --git a/src/video_core/vertex_shader.cpp b/src/video_core/vertex_shader.cpp index 80935a50a..def868ac7 100644 --- a/src/video_core/vertex_shader.cpp +++ b/src/video_core/vertex_shader.cpp @@ -85,8 +85,11 @@ struct VertexShaderState { }; struct CallStackElement { - u32 final_address; - u32 return_address; + u32 final_address; // Address upon which we jump to return_address + u32 return_address; // Where to jump when leaving scope + u8 repeat_counter; // How often to repeat until this call stack element is removed + u8 loop_increment; // Which value to add to the loop counter after an iteration + // TODO: Should this be a signed value? Does it even matter? }; // TODO: Is there a maximal size for this? @@ -105,9 +108,14 @@ static void ProcessShaderCode(VertexShaderState& state) { while (true) { if (!state.call_stack.empty()) { - if (state.program_counter - shader_memory.data() == state.call_stack.top().final_address) { - state.program_counter = &shader_memory[state.call_stack.top().return_address]; - state.call_stack.pop(); + auto& top = state.call_stack.top(); + if (state.program_counter - shader_memory.data() == top.final_address) { + state.address_registers[2] += top.loop_increment; + + if (top.repeat_counter-- == 0) { + state.program_counter = &shader_memory[top.return_address]; + state.call_stack.pop(); + } // TODO: Is "trying again" accurate to hardware? continue; @@ -118,9 +126,10 @@ static void ProcessShaderCode(VertexShaderState& state) { const Instruction& instr = *(const Instruction*)state.program_counter; const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id]; - auto call = [&](VertexShaderState& state, u32 offset, u32 num_instructions, u32 return_offset) { + static auto call = [](VertexShaderState& state, u32 offset, u32 num_instructions, + u32 return_offset, u8 repeat_count, u8 loop_increment) { state.program_counter = &shader_memory[offset] - 1; // -1 to make sure when incrementing the PC we end up at the correct offset - state.call_stack.push({ offset + num_instructions, return_offset }); + state.call_stack.push({ offset + num_instructions, return_offset, repeat_count, loop_increment }); }; u32 binary_offset = state.program_counter - shader_memory.data(); @@ -457,7 +466,7 @@ static void ProcessShaderCode(VertexShaderState& state) { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, - binary_offset + 1); + binary_offset + 1, 0, 0); break; case Instruction::OpCode::CALLU: @@ -465,7 +474,7 @@ static void ProcessShaderCode(VertexShaderState& state) { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, - binary_offset + 1); + binary_offset + 1, 0, 0); } break; @@ -474,7 +483,7 @@ static void ProcessShaderCode(VertexShaderState& state) { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, - binary_offset + 1); + binary_offset + 1, 0, 0); } break; @@ -486,12 +495,12 @@ static void ProcessShaderCode(VertexShaderState& state) { call(state, binary_offset + 1, instr.flow_control.dest_offset - binary_offset - 1, - instr.flow_control.dest_offset + instr.flow_control.num_instructions); + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } else { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, - instr.flow_control.dest_offset + instr.flow_control.num_instructions); + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } break; @@ -504,17 +513,30 @@ static void ProcessShaderCode(VertexShaderState& state) { call(state, binary_offset + 1, instr.flow_control.dest_offset - binary_offset - 1, - instr.flow_control.dest_offset + instr.flow_control.num_instructions); + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } else { call(state, instr.flow_control.dest_offset, instr.flow_control.num_instructions, - instr.flow_control.dest_offset + instr.flow_control.num_instructions); + instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0); } break; } + case Instruction::OpCode::LOOP: + { + state.address_registers[2] = shader_uniforms.i[instr.flow_control.int_uniform_id].y; + + call(state, + binary_offset + 1, + instr.flow_control.dest_offset - binary_offset + 1, + instr.flow_control.dest_offset + 1, + shader_uniforms.i[instr.flow_control.int_uniform_id].x, + shader_uniforms.i[instr.flow_control.int_uniform_id].z); + break; + } + default: LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x", (int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex); |