summaryrefslogtreecommitdiffstats
path: root/src/video_core
diff options
context:
space:
mode:
Diffstat (limited to 'src/video_core')
-rw-r--r--src/video_core/clipper.cpp84
-rw-r--r--src/video_core/command_processor.cpp32
-rw-r--r--src/video_core/pica.h24
-rw-r--r--src/video_core/rasterizer.cpp252
-rw-r--r--src/video_core/vertex_shader.cpp50
5 files changed, 263 insertions, 179 deletions
diff --git a/src/video_core/clipper.cpp b/src/video_core/clipper.cpp
index 1744066ba..ba3876a76 100644
--- a/src/video_core/clipper.cpp
+++ b/src/video_core/clipper.cpp
@@ -15,30 +15,18 @@ namespace Clipper {
struct ClippingEdge {
public:
- enum Type {
- POS_X = 0,
- NEG_X = 1,
- POS_Y = 2,
- NEG_Y = 3,
- POS_Z = 4,
- NEG_Z = 5,
- };
-
- ClippingEdge(Type type, float24 position) : type(type), pos(position) {}
+ ClippingEdge(Math::Vec4<float24> coeffs,
+ Math::Vec4<float24> bias = Math::Vec4<float24>(float24::FromFloat32(0),
+ float24::FromFloat32(0),
+ float24::FromFloat32(0),
+ float24::FromFloat32(0)))
+ : coeffs(coeffs),
+ bias(bias)
+ {
+ }
bool IsInside(const OutputVertex& vertex) const {
- switch (type) {
- case POS_X: return vertex.pos.x <= pos * vertex.pos.w;
- case NEG_X: return vertex.pos.x >= pos * vertex.pos.w;
- case POS_Y: return vertex.pos.y <= pos * vertex.pos.w;
- case NEG_Y: return vertex.pos.y >= pos * vertex.pos.w;
-
- // TODO: Check z compares ... should be 0..1 instead?
- case POS_Z: return vertex.pos.z <= pos * vertex.pos.w;
-
- default:
- case NEG_Z: return vertex.pos.z >= pos * vertex.pos.w;
- }
+ return Math::Dot(vertex.pos + bias, coeffs) <= float24::FromFloat32(0);
}
bool IsOutSide(const OutputVertex& vertex) const {
@@ -46,31 +34,17 @@ public:
}
OutputVertex GetIntersection(const OutputVertex& v0, const OutputVertex& v1) const {
- auto dotpr = [this](const OutputVertex& vtx) {
- switch (type) {
- case POS_X: return vtx.pos.x - vtx.pos.w;
- case NEG_X: return -vtx.pos.x - vtx.pos.w;
- case POS_Y: return vtx.pos.y - vtx.pos.w;
- case NEG_Y: return -vtx.pos.y - vtx.pos.w;
-
- // TODO: Verify z clipping
- case POS_Z: return vtx.pos.z - vtx.pos.w;
-
- default:
- case NEG_Z: return -vtx.pos.w;
- }
- };
-
- float24 dp = dotpr(v0);
- float24 dp_prev = dotpr(v1);
+ float24 dp = Math::Dot(v0.pos + bias, coeffs);
+ float24 dp_prev = Math::Dot(v1.pos + bias, coeffs);
float24 factor = dp_prev / (dp_prev - dp);
return OutputVertex::Lerp(factor, v0, v1);
}
private:
- Type type;
float24 pos;
+ Math::Vec4<float24> coeffs;
+ Math::Vec4<float24> bias;
};
static void InitScreenCoordinates(OutputVertex& vtx)
@@ -98,10 +72,9 @@ static void InitScreenCoordinates(OutputVertex& vtx)
vtx.tc2 *= inv_w;
vtx.pos.w = inv_w;
- // TODO: Not sure why the viewport width needs to be divided by 2 but the viewport height does not
vtx.screenpos[0] = (vtx.pos.x * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_x + viewport.offset_x;
vtx.screenpos[1] = (vtx.pos.y * inv_w + float24::FromFloat32(1.0)) * viewport.halfsize_y + viewport.offset_y;
- vtx.screenpos[2] = viewport.offset_z - vtx.pos.z * inv_w * viewport.zscale;
+ vtx.screenpos[2] = viewport.offset_z + vtx.pos.z * inv_w * viewport.zscale;
}
void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) {
@@ -117,14 +90,29 @@ void ProcessTriangle(OutputVertex &v0, OutputVertex &v1, OutputVertex &v2) {
auto* output_list = &buffer_a;
auto* input_list = &buffer_b;
+ // NOTE: We clip against a w=epsilon plane to guarantee that the output has a positive w value.
+ // TODO: Not sure if this is a valid approach. Also should probably instead use the smallest
+ // epsilon possible within float24 accuracy.
+ static const float24 EPSILON = float24::FromFloat32(0.00001);
+ static const float24 f0 = float24::FromFloat32(0.0);
+ static const float24 f1 = float24::FromFloat32(1.0);
+ static const std::array<ClippingEdge, 7> clipping_edges = {{
+ { Math::MakeVec( f1, f0, f0, -f1) }, // x = +w
+ { Math::MakeVec(-f1, f0, f0, -f1) }, // x = -w
+ { Math::MakeVec( f0, f1, f0, -f1) }, // y = +w
+ { Math::MakeVec( f0, -f1, f0, -f1) }, // y = -w
+ { Math::MakeVec( f0, f0, f1, f0) }, // z = 0
+ { Math::MakeVec( f0, f0, -f1, -f1) }, // z = -w
+ { Math::MakeVec( f0, f0, f0, -f1), Math::Vec4<float24>(f0, f0, f0, EPSILON) }, // w = EPSILON
+ }};
+
+ // TODO: If one vertex lies outside one of the depth clipping planes, some platforms (e.g. Wii)
+ // drop the whole primitive instead of clipping the primitive properly. We should test if
+ // this happens on the 3DS, too.
+
// Simple implementation of the Sutherland-Hodgman clipping algorithm.
// TODO: Make this less inefficient (currently lots of useless buffering overhead happens here)
- for (auto edge : { ClippingEdge(ClippingEdge::POS_X, float24::FromFloat32(+1.0)),
- ClippingEdge(ClippingEdge::NEG_X, float24::FromFloat32(-1.0)),
- ClippingEdge(ClippingEdge::POS_Y, float24::FromFloat32(+1.0)),
- ClippingEdge(ClippingEdge::NEG_Y, float24::FromFloat32(-1.0)),
- ClippingEdge(ClippingEdge::POS_Z, float24::FromFloat32(+1.0)),
- ClippingEdge(ClippingEdge::NEG_Z, float24::FromFloat32(-1.0)) }) {
+ for (auto edge : clipping_edges) {
std::swap(input_list, output_list);
output_list->clear();
diff --git a/src/video_core/command_processor.cpp b/src/video_core/command_processor.cpp
index 0d9f4ba66..586ad62b6 100644
--- a/src/video_core/command_processor.cpp
+++ b/src/video_core/command_processor.cpp
@@ -2,6 +2,8 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
+#include <boost/range/algorithm/fill.hpp>
+
#include "clipper.h"
#include "command_processor.h"
#include "math.h"
@@ -23,10 +25,6 @@ static int float_regs_counter = 0;
static u32 uniform_write_buffer[4];
-// Used for VSLoadProgramData and VSLoadSwizzleData
-static u32 vs_binary_write_offset = 0;
-static u32 vs_swizzle_write_offset = 0;
-
static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
if (id >= registers.NumIds())
@@ -65,10 +63,14 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
// Information about internal vertex attributes
u32 vertex_attribute_sources[16];
- std::fill(vertex_attribute_sources, &vertex_attribute_sources[16], 0xdeadbeef);
+ boost::fill(vertex_attribute_sources, 0xdeadbeef);
u32 vertex_attribute_strides[16];
u32 vertex_attribute_formats[16];
- u32 vertex_attribute_elements[16];
+
+ // HACK: Initialize vertex_attribute_elements to zero to prevent infinite loops below.
+ // This is one of the hacks required to deal with uninitalized vertex attributes.
+ // TODO: Fix this properly.
+ u32 vertex_attribute_elements[16] = {};
u32 vertex_attribute_element_size[16];
// Setup attribute data from loaders
@@ -252,11 +254,6 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
break;
}
- // Seems to be used to reset the write pointer for VSLoadProgramData
- case PICA_REG_INDEX(vs_program.begin_load):
- vs_binary_write_offset = 0;
- break;
-
// Load shader program code
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[0], 0x2cc):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[1], 0x2cd):
@@ -267,16 +264,11 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[6], 0x2d2):
case PICA_REG_INDEX_WORKAROUND(vs_program.set_word[7], 0x2d3):
{
- VertexShader::SubmitShaderMemoryChange(vs_binary_write_offset, value);
- vs_binary_write_offset++;
+ VertexShader::SubmitShaderMemoryChange(registers.vs_program.offset, value);
+ registers.vs_program.offset++;
break;
}
- // Seems to be used to reset the write pointer for VSLoadSwizzleData
- case PICA_REG_INDEX(vs_swizzle_patterns.begin_load):
- vs_swizzle_write_offset = 0;
- break;
-
// Load swizzle pattern data
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[0], 0x2d6):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[1], 0x2d7):
@@ -287,8 +279,8 @@ static inline void WritePicaReg(u32 id, u32 value, u32 mask) {
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[6], 0x2dc):
case PICA_REG_INDEX_WORKAROUND(vs_swizzle_patterns.set_word[7], 0x2dd):
{
- VertexShader::SubmitSwizzleDataChange(vs_swizzle_write_offset, value);
- vs_swizzle_write_offset++;
+ VertexShader::SubmitSwizzleDataChange(registers.vs_swizzle_patterns.offset, value);
+ registers.vs_swizzle_patterns.offset++;
break;
}
diff --git a/src/video_core/pica.h b/src/video_core/pica.h
index 9c1a12dc8..e4a5ef78e 100644
--- a/src/video_core/pica.h
+++ b/src/video_core/pica.h
@@ -118,8 +118,9 @@ struct Regs {
struct TextureConfig {
enum WrapMode : u32 {
- ClampToEdge = 0,
- Repeat = 2,
+ ClampToEdge = 0,
+ Repeat = 2,
+ MirroredRepeat = 3,
};
INSERT_PADDING_WORDS(0x1);
@@ -131,7 +132,7 @@ struct Regs {
union {
BitField< 8, 2, WrapMode> wrap_s;
- BitField<11, 2, WrapMode> wrap_t;
+ BitField<12, 2, WrapMode> wrap_t;
};
INSERT_PADDING_WORDS(0x1);
@@ -223,6 +224,8 @@ struct Regs {
struct TevStageConfig {
enum class Source : u32 {
PrimaryColor = 0x0,
+ PrimaryFragmentColor = 0x1,
+
Texture0 = 0x3,
Texture1 = 0x4,
Texture2 = 0x5,
@@ -265,6 +268,9 @@ struct Regs {
AddSigned = 3,
Lerp = 4,
Subtract = 5,
+
+ MultiplyThenAdd = 8,
+ AddThenMultiply = 9,
};
union {
@@ -337,7 +343,7 @@ struct Regs {
};
union {
- enum BlendEquation : u32 {
+ enum class BlendEquation : u32 {
Add = 0,
Subtract = 1,
ReverseSubtract = 2,
@@ -421,7 +427,7 @@ struct Regs {
INSERT_PADDING_WORDS(0x6);
u32 depth_format;
- u32 color_format;
+ BitField<16, 3, u32> color_format;
INSERT_PADDING_WORDS(0x4);
@@ -678,7 +684,9 @@ struct Regs {
INSERT_PADDING_WORDS(0x2);
struct {
- u32 begin_load;
+ // Offset of the next instruction to write code to.
+ // Incremented with each instruction write.
+ u32 offset;
// Writing to these registers sets the "current" word in the shader program.
// TODO: It's not clear how the hardware stores what the "current" word is.
@@ -690,7 +698,9 @@ struct Regs {
// This register group is used to load an internal table of swizzling patterns,
// which are indexed by each shader instruction to specify vector component swizzling.
struct {
- u32 begin_load;
+ // Offset of the next swizzle pattern to write code to.
+ // Incremented with each instruction write.
+ u32 offset;
// Writing to these registers sets the "current" swizzle pattern in the table.
// TODO: It's not clear how the hardware stores what the "current" swizzle pattern is.
diff --git a/src/video_core/rasterizer.cpp b/src/video_core/rasterizer.cpp
index 3faa10153..94873f406 100644
--- a/src/video_core/rasterizer.cpp
+++ b/src/video_core/rasterizer.cpp
@@ -5,6 +5,7 @@
#include <algorithm>
#include "common/common_types.h"
+#include "common/math_util.h"
#include "math.h"
#include "pica.h"
@@ -20,16 +21,31 @@ namespace Rasterizer {
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
u32* color_buffer = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr)));
- u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
- // Assuming RGBA8 format until actual framebuffer format handling is implemented
- *(color_buffer + x + y * registers.framebuffer.GetWidth()) = value;
+ // Similarly to textures, the render framebuffer is laid out from bottom to top, too.
+ // NOTE: The framebuffer height register contains the actual FB height minus one.
+ y = (registers.framebuffer.height - y);
+
+ switch (registers.framebuffer.color_format) {
+ case registers.framebuffer.RGBA8:
+ {
+ u32 value = (color.a() << 24) | (color.r() << 16) | (color.g() << 8) | color.b();
+ *(color_buffer + x + y * registers.framebuffer.GetWidth()) = value;
+ break;
+ }
+
+ default:
+ LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", registers.framebuffer.color_format);
+ UNIMPLEMENTED();
+ }
}
static const Math::Vec4<u8> GetPixel(int x, int y) {
const PAddr addr = registers.framebuffer.GetColorBufferPhysicalAddress();
u32* color_buffer_u32 = reinterpret_cast<u32*>(Memory::GetPointer(PAddrToVAddr(addr)));
+ y = (registers.framebuffer.height - y);
+
u32 value = *(color_buffer_u32 + x + y * registers.framebuffer.GetWidth());
Math::Vec4<u8> ret;
ret.a() = value >> 24;
@@ -43,6 +59,8 @@ static u32 GetDepth(int x, int y) {
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr)));
+ y = (registers.framebuffer.height - y);
+
// Assuming 16-bit depth buffer format until actual format handling is implemented
return *(depth_buffer + x + y * registers.framebuffer.GetWidth());
}
@@ -51,6 +69,8 @@ static void SetDepth(int x, int y, u16 value) {
const PAddr addr = registers.framebuffer.GetDepthBufferPhysicalAddress();
u16* depth_buffer = reinterpret_cast<u16*>(Memory::GetPointer(PAddrToVAddr(addr)));
+ y = (registers.framebuffer.height - y);
+
// Assuming 16-bit depth buffer format until actual format handling is implemented
*(depth_buffer + x + y * registers.framebuffer.GetWidth()) = value;
}
@@ -90,30 +110,43 @@ static int SignedArea (const Math::Vec2<Fix12P4>& vtx1,
return Math::Cross(vec1, vec2).z;
};
-void ProcessTriangle(const VertexShader::OutputVertex& v0,
- const VertexShader::OutputVertex& v1,
- const VertexShader::OutputVertex& v2)
+/**
+ * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
+ * culling via recursion.
+ */
+static void ProcessTriangleInternal(const VertexShader::OutputVertex& v0,
+ const VertexShader::OutputVertex& v1,
+ const VertexShader::OutputVertex& v2,
+ bool reversed = false)
{
// vertex positions in rasterizer coordinates
- auto FloatToFix = [](float24 flt) {
- return Fix12P4(static_cast<unsigned short>(flt.ToFloat32() * 16.0f));
- };
- auto ScreenToRasterizerCoordinates = [FloatToFix](const Math::Vec3<float24> vec) {
- return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
- };
+ static auto FloatToFix = [](float24 flt) {
+ // TODO: Rounding here is necessary to prevent garbage pixels at
+ // triangle borders. Is it that the correct solution, though?
+ return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f)));
+ };
+ static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) {
+ return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
+ };
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
ScreenToRasterizerCoordinates(v1.screenpos),
ScreenToRasterizerCoordinates(v2.screenpos) };
- if (registers.cull_mode == Regs::CullMode::KeepClockWise) {
- // Reverse vertex order and use the CCW code path.
- std::swap(vtxpos[1], vtxpos[2]);
- }
+ if (registers.cull_mode == Regs::CullMode::KeepAll) {
+ // Make sure we always end up with a triangle wound counter-clockwise
+ if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
+ ProcessTriangleInternal(v0, v2, v1, true);
+ return;
+ }
+ } else {
+ if (!reversed && registers.cull_mode == Regs::CullMode::KeepClockWise) {
+ // Reverse vertex order and use the CCW code path.
+ ProcessTriangleInternal(v0, v2, v1, true);
+ return;
+ }
- if (registers.cull_mode != Regs::CullMode::KeepAll) {
// Cull away triangles which are wound clockwise.
- // TODO: A check for degenerate triangles ("== 0") should be considered for CullMode::KeepAll
if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
return;
}
@@ -155,9 +188,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
auto textures = registers.GetTextures();
auto tev_stages = registers.GetTevStages();
+ // Enter rasterization loop, starting at the center of the topleft bounding box corner.
// TODO: Not sure if looping through x first might be faster
- for (u16 y = min_y; y < max_y; y += 0x10) {
- for (u16 x = min_x; x < max_x; x += 0x10) {
+ for (u16 y = min_y + 8; y < max_y; y += 0x10) {
+ for (u16 x = min_x + 8; x < max_x; x += 0x10) {
// Calculate the barycentric coordinates w0, w1 and w2
int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
@@ -220,7 +254,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32();
int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32();
- auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) {
+ static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) {
switch (mode) {
case Regs::TextureConfig::ClampToEdge:
val = std::max(val, 0);
@@ -228,7 +262,15 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
return val;
case Regs::TextureConfig::Repeat:
- return (int)(((unsigned)val) % size);
+ return (int)((unsigned)val % size);
+
+ case Regs::TextureConfig::MirroredRepeat:
+ {
+ int val = (int)((unsigned)val % (2 * size));
+ if (val >= size)
+ val = 2 * size - 1 - val;
+ return val;
+ }
default:
LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x\n", (int)mode);
@@ -236,6 +278,10 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
return 0;
}
};
+
+ // Textures are laid out from bottom to top, hence we invert the t coordinate.
+ // NOTE: This may not be the right place for the inversion.
+ // TODO: Check if this applies to ETC textures, too.
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
@@ -262,7 +308,9 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
auto GetSource = [&](Source source) -> Math::Vec4<u8> {
switch (source) {
+ // TODO: What's the difference between these two?
case Source::PrimaryColor:
+ case Source::PrimaryFragmentColor:
return primary_color;
case Source::Texture0:
@@ -378,6 +426,25 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
return result.Cast<u8>();
}
+ case Operation::MultiplyThenAdd:
+ {
+ auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255;
+ result.r() = std::min(255, result.r());
+ result.g() = std::min(255, result.g());
+ result.b() = std::min(255, result.b());
+ return result.Cast<u8>();
+ }
+
+ case Operation::AddThenMultiply:
+ {
+ auto result = input[0] + input[1];
+ result.r() = std::min(255, result.r());
+ result.g() = std::min(255, result.g());
+ result.b() = std::min(255, result.b());
+ result = (result * input[2].Cast<int>()) / 255;
+ return result.Cast<u8>();
+ }
+
default:
LOG_ERROR(HW_GPU, "Unknown color combiner operation %d\n", (int)op);
UNIMPLEMENTED();
@@ -402,6 +469,12 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
case Operation::Subtract:
return std::max(0, (int)input[0] - (int)input[1]);
+ case Operation::MultiplyThenAdd:
+ return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255);
+
+ case Operation::AddThenMultiply:
+ return (std::min(255, (input[0] + input[1])) * input[2]) / 255;
+
default:
LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d\n", (int)op);
UNIMPLEMENTED();
@@ -475,7 +548,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
// TODO: Does depth indeed only get written even if depth testing is enabled?
if (registers.output_merger.depth_test_enable) {
- u16 z = (u16)(-(v0.screenpos[2].ToFloat32() * w0 +
+ u16 z = (u16)((v0.screenpos[2].ToFloat32() * w0 +
v1.screenpos[2].ToFloat32() * w1 +
v2.screenpos[2].ToFloat32() * w2) * 65535.f / wsum);
u16 ref_z = GetDepth(x >> 4, y >> 4);
@@ -524,6 +597,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
}
auto dest = GetPixel(x >> 4, y >> 4);
+ Math::Vec4<u8> blend_output = combiner_output;
if (registers.output_merger.alphablend_enable) {
auto params = registers.output_merger.alpha_blending;
@@ -574,7 +648,7 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
default:
LOG_CRITICAL(HW_GPU, "Unknown color blend factor %x", factor);
- exit(0);
+ UNIMPLEMENTED();
break;
}
};
@@ -607,86 +681,78 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
default:
LOG_CRITICAL(HW_GPU, "Unknown alpha blend factor %x", factor);
- exit(0);
+ UNIMPLEMENTED();
+ break;
+ }
+ };
+
+ using BlendEquation = decltype(params)::BlendEquation;
+ static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
+ const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
+ BlendEquation equation) {
+ Math::Vec4<int> result;
+
+ auto src_result = (src * srcfactor).Cast<int>();
+ auto dst_result = (dest * destfactor).Cast<int>();
+
+ switch (equation) {
+ case BlendEquation::Add:
+ result = (src_result + dst_result) / 255;
break;
+
+ case BlendEquation::Subtract:
+ result = (src_result - dst_result) / 255;
+ break;
+
+ case BlendEquation::ReverseSubtract:
+ result = (dst_result - src_result) / 255;
+ break;
+
+ // TODO: How do these two actually work?
+ // OpenGL doesn't include the blend factors in the min/max computations,
+ // but is this what the 3DS actually does?
+ case BlendEquation::Min:
+ result.r() = std::min(src.r(), dest.r());
+ result.g() = std::min(src.g(), dest.g());
+ result.b() = std::min(src.b(), dest.b());
+ result.a() = std::min(src.a(), dest.a());
+ break;
+
+ case BlendEquation::Max:
+ result.r() = std::max(src.r(), dest.r());
+ result.g() = std::max(src.g(), dest.g());
+ result.b() = std::max(src.b(), dest.b());
+ result.a() = std::max(src.a(), dest.a());
+ break;
+
+ default:
+ LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", equation);
+ UNIMPLEMENTED();
}
+
+ return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255),
+ MathUtil::Clamp(result.g(), 0, 255),
+ MathUtil::Clamp(result.b(), 0, 255),
+ MathUtil::Clamp(result.a(), 0, 255));
};
auto srcfactor = Math::MakeVec(LookupFactorRGB(params.factor_source_rgb),
LookupFactorA(params.factor_source_a));
auto dstfactor = Math::MakeVec(LookupFactorRGB(params.factor_dest_rgb),
LookupFactorA(params.factor_dest_a));
-
- auto src_result = (combiner_output * srcfactor).Cast<int>();
- auto dst_result = (dest * dstfactor).Cast<int>();
-
- switch (params.blend_equation_rgb) {
- case params.Add:
- {
- auto result = (src_result + dst_result) / 255;
- result.r() = std::min(255, result.r());
- result.g() = std::min(255, result.g());
- result.b() = std::min(255, result.b());
- combiner_output = result.Cast<u8>();
- break;
- }
-
- case params.Subtract:
- {
- auto result = (src_result - dst_result) / 255;
- result.r() = std::max(0, result.r());
- result.g() = std::max(0, result.g());
- result.b() = std::max(0, result.b());
- combiner_output = result.Cast<u8>();
- break;
- }
-
- case params.ReverseSubtract:
- {
- auto result = (dst_result - src_result) / 255;
- result.r() = std::max(0, result.r());
- result.g() = std::max(0, result.g());
- result.b() = std::max(0, result.b());
- combiner_output = result.Cast<u8>();
- break;
- }
-
- case params.Min:
- {
- // TODO: GL spec says to do it without the factors, but is this what the 3DS does?
- Math::Vec4<int> result;
- result.r() = std::min(combiner_output.r(),dest.r());
- result.g() = std::min(combiner_output.g(),dest.g());
- result.b() = std::min(combiner_output.b(),dest.b());
- combiner_output = result.Cast<u8>();
- break;
- }
-
- case params.Max:
- {
- // TODO: GL spec says to do it without the factors, but is this what the 3DS does?
- Math::Vec4<int> result;
- result.r() = std::max(combiner_output.r(),dest.r());
- result.g() = std::max(combiner_output.g(),dest.g());
- result.b() = std::max(combiner_output.b(),dest.b());
- combiner_output = result.Cast<u8>();
- break;
- }
- default:
- LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", params.blend_equation_rgb.Value());
- exit(0);
- }
+ blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb);
+ blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a();
} else {
LOG_CRITICAL(HW_GPU, "logic op: %x", registers.output_merger.logic_op);
- exit(0);
+ UNIMPLEMENTED();
}
const Math::Vec4<u8> result = {
- registers.output_merger.red_enable ? combiner_output.r() : dest.r(),
- registers.output_merger.green_enable ? combiner_output.g() : dest.g(),
- registers.output_merger.blue_enable ? combiner_output.b() : dest.b(),
- registers.output_merger.alpha_enable ? combiner_output.a() : dest.a()
+ registers.output_merger.red_enable ? blend_output.r() : dest.r(),
+ registers.output_merger.green_enable ? blend_output.g() : dest.g(),
+ registers.output_merger.blue_enable ? blend_output.b() : dest.b(),
+ registers.output_merger.alpha_enable ? blend_output.a() : dest.a()
};
DrawPixel(x >> 4, y >> 4, result);
@@ -694,6 +760,12 @@ void ProcessTriangle(const VertexShader::OutputVertex& v0,
}
}
+void ProcessTriangle(const VertexShader::OutputVertex& v0,
+ const VertexShader::OutputVertex& v1,
+ const VertexShader::OutputVertex& v2) {
+ ProcessTriangleInternal(v0, v1, v2);
+}
+
} // namespace Rasterizer
} // namespace Pica
diff --git a/src/video_core/vertex_shader.cpp b/src/video_core/vertex_shader.cpp
index 80935a50a..def868ac7 100644
--- a/src/video_core/vertex_shader.cpp
+++ b/src/video_core/vertex_shader.cpp
@@ -85,8 +85,11 @@ struct VertexShaderState {
};
struct CallStackElement {
- u32 final_address;
- u32 return_address;
+ u32 final_address; // Address upon which we jump to return_address
+ u32 return_address; // Where to jump when leaving scope
+ u8 repeat_counter; // How often to repeat until this call stack element is removed
+ u8 loop_increment; // Which value to add to the loop counter after an iteration
+ // TODO: Should this be a signed value? Does it even matter?
};
// TODO: Is there a maximal size for this?
@@ -105,9 +108,14 @@ static void ProcessShaderCode(VertexShaderState& state) {
while (true) {
if (!state.call_stack.empty()) {
- if (state.program_counter - shader_memory.data() == state.call_stack.top().final_address) {
- state.program_counter = &shader_memory[state.call_stack.top().return_address];
- state.call_stack.pop();
+ auto& top = state.call_stack.top();
+ if (state.program_counter - shader_memory.data() == top.final_address) {
+ state.address_registers[2] += top.loop_increment;
+
+ if (top.repeat_counter-- == 0) {
+ state.program_counter = &shader_memory[top.return_address];
+ state.call_stack.pop();
+ }
// TODO: Is "trying again" accurate to hardware?
continue;
@@ -118,9 +126,10 @@ static void ProcessShaderCode(VertexShaderState& state) {
const Instruction& instr = *(const Instruction*)state.program_counter;
const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id];
- auto call = [&](VertexShaderState& state, u32 offset, u32 num_instructions, u32 return_offset) {
+ static auto call = [](VertexShaderState& state, u32 offset, u32 num_instructions,
+ u32 return_offset, u8 repeat_count, u8 loop_increment) {
state.program_counter = &shader_memory[offset] - 1; // -1 to make sure when incrementing the PC we end up at the correct offset
- state.call_stack.push({ offset + num_instructions, return_offset });
+ state.call_stack.push({ offset + num_instructions, return_offset, repeat_count, loop_increment });
};
u32 binary_offset = state.program_counter - shader_memory.data();
@@ -457,7 +466,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
- binary_offset + 1);
+ binary_offset + 1, 0, 0);
break;
case Instruction::OpCode::CALLU:
@@ -465,7 +474,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
- binary_offset + 1);
+ binary_offset + 1, 0, 0);
}
break;
@@ -474,7 +483,7 @@ static void ProcessShaderCode(VertexShaderState& state) {
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
- binary_offset + 1);
+ binary_offset + 1, 0, 0);
}
break;
@@ -486,12 +495,12 @@ static void ProcessShaderCode(VertexShaderState& state) {
call(state,
binary_offset + 1,
instr.flow_control.dest_offset - binary_offset - 1,
- instr.flow_control.dest_offset + instr.flow_control.num_instructions);
+ instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
} else {
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
- instr.flow_control.dest_offset + instr.flow_control.num_instructions);
+ instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
}
break;
@@ -504,17 +513,30 @@ static void ProcessShaderCode(VertexShaderState& state) {
call(state,
binary_offset + 1,
instr.flow_control.dest_offset - binary_offset - 1,
- instr.flow_control.dest_offset + instr.flow_control.num_instructions);
+ instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
} else {
call(state,
instr.flow_control.dest_offset,
instr.flow_control.num_instructions,
- instr.flow_control.dest_offset + instr.flow_control.num_instructions);
+ instr.flow_control.dest_offset + instr.flow_control.num_instructions, 0, 0);
}
break;
}
+ case Instruction::OpCode::LOOP:
+ {
+ state.address_registers[2] = shader_uniforms.i[instr.flow_control.int_uniform_id].y;
+
+ call(state,
+ binary_offset + 1,
+ instr.flow_control.dest_offset - binary_offset + 1,
+ instr.flow_control.dest_offset + 1,
+ shader_uniforms.i[instr.flow_control.int_uniform_id].x,
+ shader_uniforms.i[instr.flow_control.int_uniform_id].z);
+ break;
+ }
+
default:
LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x",
(int)instr.opcode.Value(), instr.opcode.GetInfo().name, instr.hex);