1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <numbers>
#include <ranges>
#include "audio_core/adsp/apps/audio_renderer/command_list_processor.h"
#include "audio_core/renderer/command/effect/reverb.h"
#include "common/polyfill_ranges.h"
namespace AudioCore::Renderer {
constexpr std::array<f32, ReverbInfo::MaxDelayLines> FdnMaxDelayLineTimes = {
53.9532470703125f,
79.19256591796875f,
116.23876953125f,
170.61529541015625f,
};
constexpr std::array<f32, ReverbInfo::MaxDelayLines> DecayMaxDelayLineTimes = {
7.0f,
9.0f,
13.0f,
17.0f,
};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayTaps + 1>, ReverbInfo::NumEarlyModes>
EarlyDelayTimes = {
{{0.000000f, 3.500000f, 2.799988f, 3.899963f, 2.699951f, 13.399963f, 7.899963f, 8.399963f,
9.899963f, 12.000000f, 12.500000f},
{0.000000f, 11.799988f, 5.500000f, 11.199951f, 10.399963f, 38.099976f, 22.199951f,
29.599976f, 21.199951f, 24.799988f, 40.000000f},
{0.000000f, 41.500000f, 20.500000f, 41.299988f, 0.000000f, 29.500000f, 33.799988f,
45.199951f, 46.799988f, 0.000000f, 50.000000f},
{33.099976f, 43.299988f, 22.799988f, 37.899963f, 14.899963f, 35.299988f, 17.899963f,
34.199951f, 0.000000f, 43.299988f, 50.000000f},
{0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f,
0.000000f, 0.000000f, 0.000000f}},
};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayTaps>, ReverbInfo::NumEarlyModes>
EarlyDelayGains = {{
{0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.699951f, 0.679993f,
0.679993f, 0.679993f},
{0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.679993f, 0.679993f,
0.679993f, 0.679993f},
{0.500000f, 0.699951f, 0.699951f, 0.679993f, 0.500000f, 0.679993f, 0.679993f, 0.699951f,
0.679993f, 0.000000f},
{0.929993f, 0.919983f, 0.869995f, 0.859985f, 0.939941f, 0.809998f, 0.799988f, 0.769958f,
0.759949f, 0.649963f},
{0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f,
0.000000f, 0.000000f},
}};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayLines>, ReverbInfo::NumLateModes>
FdnDelayTimes = {{
{53.953247f, 79.192566f, 116.238770f, 130.615295f},
{53.953247f, 79.192566f, 116.238770f, 170.615295f},
{5.000000f, 10.000000f, 5.000000f, 10.000000f},
{47.029968f, 71.000000f, 103.000000f, 170.000000f},
{53.953247f, 79.192566f, 116.238770f, 170.615295f},
}};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayLines>, ReverbInfo::NumLateModes>
DecayDelayTimes = {{
{7.000000f, 9.000000f, 13.000000f, 17.000000f},
{7.000000f, 9.000000f, 13.000000f, 17.000000f},
{1.000000f, 1.000000f, 1.000000f, 1.000000f},
{7.000000f, 7.000000f, 13.000000f, 9.000000f},
{7.000000f, 9.000000f, 13.000000f, 17.000000f},
}};
/**
* Update the ReverbInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
*/
static void UpdateReverbEffectParameter(const ReverbInfo::ParameterVersion2& params,
ReverbInfo::State& state) {
const auto pow_10 = [](f32 val) -> f32 {
return (val >= 0.0f) ? 1.0f : (val <= -5.3f) ? 0.0f : std::pow(10.0f, val);
};
const auto cos = [](f32 degrees) -> f32 {
return std::cos(degrees * std::numbers::pi_v<f32> / 180.0f);
};
static bool unk_initialized{false};
static Common::FixedPoint<50, 14> unk_value{};
const auto sample_rate{Common::FixedPoint<50, 14>::from_base(params.sample_rate)};
const auto pre_delay_time{Common::FixedPoint<50, 14>::from_base(params.pre_delay)};
for (u32 i = 0; i < ReverbInfo::MaxDelayTaps; i++) {
auto early_delay{
((pre_delay_time + EarlyDelayTimes[params.early_mode][i]) * sample_rate).to_int()};
early_delay = std::min(early_delay, state.pre_delay_line.sample_count_max);
state.early_delay_times[i] = early_delay + 1;
state.early_gains[i] = Common::FixedPoint<50, 14>::from_base(params.early_gain) *
EarlyDelayGains[params.early_mode][i];
}
if (params.channel_count == 2) {
state.early_gains[4] * 0.5f;
state.early_gains[5] * 0.5f;
}
auto pre_time{
((pre_delay_time + EarlyDelayTimes[params.early_mode][10]) * sample_rate).to_int()};
state.pre_delay_time = std::min(pre_time, state.pre_delay_line.sample_count_max);
if (!unk_initialized) {
unk_value = cos((1280.0f / sample_rate).to_float());
unk_initialized = true;
}
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
const auto fdn_delay{(FdnDelayTimes[params.late_mode][i] * sample_rate).to_int()};
state.fdn_delay_lines[i].sample_count =
std::min(fdn_delay, state.fdn_delay_lines[i].sample_count_max);
state.fdn_delay_lines[i].buffer_end =
&state.fdn_delay_lines[i].buffer[state.fdn_delay_lines[i].sample_count - 1];
const auto decay_delay{(DecayDelayTimes[params.late_mode][i] * sample_rate).to_int()};
state.decay_delay_lines[i].sample_count =
std::min(decay_delay, state.decay_delay_lines[i].sample_count_max);
state.decay_delay_lines[i].buffer_end =
&state.decay_delay_lines[i].buffer[state.decay_delay_lines[i].sample_count - 1];
state.decay_delay_lines[i].decay =
0.5999755859375f * (1.0f - Common::FixedPoint<50, 14>::from_base(params.colouration));
auto a{(Common::FixedPoint<50, 14>(state.fdn_delay_lines[i].sample_count_max) +
state.decay_delay_lines[i].sample_count_max) *
-3};
auto b{a / (Common::FixedPoint<50, 14>::from_base(params.decay_time) * sample_rate)};
Common::FixedPoint<50, 14> c{0.0f};
Common::FixedPoint<50, 14> d{0.0f};
auto hf_decay_ratio{Common::FixedPoint<50, 14>::from_base(params.high_freq_decay_ratio)};
if (hf_decay_ratio > 0.99493408203125f) {
c = 0.0f;
d = 1.0f;
} else {
const auto e{
pow_10(((((1.0f / hf_decay_ratio) - 1.0f) * 2) / 100 * (b / 10)).to_float())};
const auto f{1.0f - e};
const auto g{2.0f - (unk_value * e * 2)};
const auto h{std::sqrt(std::pow(g.to_float(), 2.0f) - (std::pow(f, 2.0f) * 4))};
c = (g - h) / (f * 2.0f);
d = 1.0f - c;
}
state.hf_decay_prev_gain[i] = c;
state.hf_decay_gain[i] = pow_10((b / 1000).to_float()) * d * 0.70709228515625f;
state.prev_feedback_output[i] = 0;
}
}
/**
* Initialize a new ReverbInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
* @param workbuffer - Game-supplied memory for the state. (Unused)
* @param long_size_pre_delay_supported - Use a longer pre-delay time before reverb begins.
*/
static void InitializeReverbEffect(const ReverbInfo::ParameterVersion2& params,
ReverbInfo::State& state, const CpuAddr workbuffer,
const bool long_size_pre_delay_supported) {
state = {};
auto delay{Common::FixedPoint<50, 14>::from_base(params.sample_rate)};
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
auto fdn_delay_time{(FdnMaxDelayLineTimes[i] * delay).to_uint_floor()};
state.fdn_delay_lines[i].Initialize(fdn_delay_time, 1.0f);
auto decay_delay_time{(DecayMaxDelayLineTimes[i] * delay).to_uint_floor()};
state.decay_delay_lines[i].Initialize(decay_delay_time, 0.0f);
}
const auto pre_delay{long_size_pre_delay_supported ? 350.0f : 150.0f};
const auto pre_delay_line{(pre_delay * delay).to_uint_floor()};
state.pre_delay_line.Initialize(pre_delay_line, 1.0f);
const auto center_delay_time{(5 * delay).to_uint_floor()};
state.center_delay_line.Initialize(center_delay_time, 1.0f);
UpdateReverbEffectParameter(params, state);
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
std::ranges::fill(state.fdn_delay_lines[i].buffer, 0);
std::ranges::fill(state.decay_delay_lines[i].buffer, 0);
}
std::ranges::fill(state.center_delay_line.buffer, 0);
std::ranges::fill(state.pre_delay_line.buffer, 0);
}
/**
* Pass-through the effect, copying input to output directly, with no reverb applied.
*
* @param inputs - Array of input mix buffers to copy.
* @param outputs - Array of output mix buffers to receive copy.
* @param channel_count - Number of channels in inputs and outputs.
* @param sample_count - Number of samples within each channel.
*/
static void ApplyReverbEffectBypass(std::span<std::span<const s32>> inputs,
std::span<std::span<s32>> outputs, const u32 channel_count,
const u32 sample_count) {
for (u32 i = 0; i < channel_count; i++) {
if (inputs[i].data() != outputs[i].data()) {
std::memcpy(outputs[i].data(), inputs[i].data(), outputs[i].size_bytes());
}
}
}
/**
* Tick the delay lines, reading and returning their current output, and writing a new decaying
* sample (mix).
*
* @param decay - The decay line.
* @param fdn - Feedback delay network.
* @param mix - The new calculated sample to be written and decayed.
* @return The next delayed and decayed sample.
*/
static Common::FixedPoint<50, 14> Axfx2AllPassTick(ReverbInfo::ReverbDelayLine& decay,
ReverbInfo::ReverbDelayLine& fdn,
const Common::FixedPoint<50, 14> mix) {
const auto val{decay.Read()};
const auto mixed{mix - (val * decay.decay)};
const auto out{decay.Tick(mixed) + (mixed * decay.decay)};
fdn.Tick(out);
return out;
}
/**
* Impl. Apply a Reverb according to the current state, on the input mix buffers,
* saving the results to the output mix buffers.
*
* @tparam NumChannels - Number of channels to process. 1-6.
Inputs/outputs should have this many buffers.
* @param params - Input parameters to update the state.
* @param state - State to use, must be initialized (see InitializeReverbEffect).
* @param inputs - Input mix buffers to perform the reverb on.
* @param outputs - Output mix buffers to receive the reverbed samples.
* @param sample_count - Number of samples to process.
*/
template <size_t NumChannels>
static void ApplyReverbEffect(const ReverbInfo::ParameterVersion2& params, ReverbInfo::State& state,
std::span<std::span<const s32>> inputs,
std::span<std::span<s32>> outputs, const u32 sample_count) {
static constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes1Ch{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
static constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes2Ch{
0, 0, 1, 1, 0, 1, 0, 0, 1, 1,
};
static constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes4Ch{
0, 0, 1, 1, 0, 1, 2, 2, 3, 3,
};
static constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes6Ch{
0, 0, 1, 1, 2, 2, 4, 4, 5, 5,
};
std::span<const u8> tap_indexes{};
if constexpr (NumChannels == 1) {
tap_indexes = OutTapIndexes1Ch;
} else if constexpr (NumChannels == 2) {
tap_indexes = OutTapIndexes2Ch;
} else if constexpr (NumChannels == 4) {
tap_indexes = OutTapIndexes4Ch;
} else if constexpr (NumChannels == 6) {
tap_indexes = OutTapIndexes6Ch;
}
for (u32 sample_index = 0; sample_index < sample_count; sample_index++) {
std::array<Common::FixedPoint<50, 14>, NumChannels> output_samples{};
for (u32 early_tap = 0; early_tap < ReverbInfo::MaxDelayTaps; early_tap++) {
const auto sample{state.pre_delay_line.TapOut(state.early_delay_times[early_tap]) *
state.early_gains[early_tap]};
output_samples[tap_indexes[early_tap]] += sample;
if constexpr (NumChannels == 6) {
output_samples[static_cast<u32>(Channels::LFE)] += sample;
}
}
if constexpr (NumChannels == 6) {
output_samples[static_cast<u32>(Channels::LFE)] *= 0.2f;
}
Common::FixedPoint<50, 14> input_sample{};
for (u32 channel = 0; channel < NumChannels; channel++) {
input_sample += inputs[channel][sample_index];
}
input_sample *= 64;
input_sample *= Common::FixedPoint<50, 14>::from_base(params.base_gain);
state.pre_delay_line.Write(input_sample);
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
state.prev_feedback_output[i] =
state.prev_feedback_output[i] * state.hf_decay_prev_gain[i] +
state.fdn_delay_lines[i].Read() * state.hf_decay_gain[i];
}
Common::FixedPoint<50, 14> pre_delay_sample{
state.pre_delay_line.TapOut(state.pre_delay_time) *
Common::FixedPoint<50, 14>::from_base(params.late_gain)};
std::array<Common::FixedPoint<50, 14>, ReverbInfo::MaxDelayLines> mix_matrix{
state.prev_feedback_output[2] + state.prev_feedback_output[1] + pre_delay_sample,
-state.prev_feedback_output[0] - state.prev_feedback_output[3] + pre_delay_sample,
state.prev_feedback_output[0] - state.prev_feedback_output[3] + pre_delay_sample,
state.prev_feedback_output[1] - state.prev_feedback_output[2] + pre_delay_sample,
};
std::array<Common::FixedPoint<50, 14>, ReverbInfo::MaxDelayLines> allpass_samples{};
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
allpass_samples[i] = Axfx2AllPassTick(state.decay_delay_lines[i],
state.fdn_delay_lines[i], mix_matrix[i]);
}
const auto dry_gain{Common::FixedPoint<50, 14>::from_base(params.dry_gain)};
const auto wet_gain{Common::FixedPoint<50, 14>::from_base(params.wet_gain)};
if constexpr (NumChannels == 6) {
const std::array<Common::FixedPoint<50, 14>, MaxChannels> allpass_outputs{
allpass_samples[0], allpass_samples[1], allpass_samples[2] - allpass_samples[3],
allpass_samples[3], allpass_samples[2], allpass_samples[3],
};
for (u32 channel = 0; channel < NumChannels; channel++) {
auto in_sample{inputs[channel][sample_index] * dry_gain};
Common::FixedPoint<50, 14> allpass{};
if (channel == static_cast<u32>(Channels::Center)) {
allpass = state.center_delay_line.Tick(allpass_outputs[channel] * 0.5f);
} else {
allpass = allpass_outputs[channel];
}
auto out_sample{((output_samples[channel] + allpass) * wet_gain) / 64};
outputs[channel][sample_index] = (in_sample + out_sample).to_int();
}
} else {
for (u32 channel = 0; channel < NumChannels; channel++) {
auto in_sample{inputs[channel][sample_index] * dry_gain};
auto out_sample{((output_samples[channel] + allpass_samples[channel]) * wet_gain) /
64};
outputs[channel][sample_index] = (in_sample + out_sample).to_int();
}
}
}
}
/**
* Apply a Reverb if enabled, according to the current state, on the input mix buffers,
* saving the results to the output mix buffers.
*
* @param params - Input parameters to use.
* @param state - State to use, must be initialized (see InitializeReverbEffect).
* @param enabled - If enabled, delay will be applied, otherwise input is copied to output.
* @param inputs - Input mix buffers to performan the reverb on.
* @param outputs - Output mix buffers to receive the reverbed samples.
* @param sample_count - Number of samples to process.
*/
static void ApplyReverbEffect(const ReverbInfo::ParameterVersion2& params, ReverbInfo::State& state,
const bool enabled, std::span<std::span<const s32>> inputs,
std::span<std::span<s32>> outputs, const u32 sample_count) {
if (enabled) {
switch (params.channel_count) {
case 0:
return;
case 1:
ApplyReverbEffect<1>(params, state, inputs, outputs, sample_count);
break;
case 2:
ApplyReverbEffect<2>(params, state, inputs, outputs, sample_count);
break;
case 4:
ApplyReverbEffect<4>(params, state, inputs, outputs, sample_count);
break;
case 6:
ApplyReverbEffect<6>(params, state, inputs, outputs, sample_count);
break;
default:
ApplyReverbEffectBypass(inputs, outputs, params.channel_count, sample_count);
break;
}
} else {
ApplyReverbEffectBypass(inputs, outputs, params.channel_count, sample_count);
}
}
void ReverbCommand::Dump([[maybe_unused]] const AudioRenderer::CommandListProcessor& processor,
std::string& string) {
string += fmt::format(
"ReverbCommand\n\tenabled {} long_size_pre_delay_supported {}\n\tinputs: ", effect_enabled,
long_size_pre_delay_supported);
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", inputs[i]);
}
string += "\n\toutputs: ";
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", outputs[i]);
}
string += "\n";
}
void ReverbCommand::Process(const AudioRenderer::CommandListProcessor& processor) {
std::array<std::span<const s32>, MaxChannels> input_buffers{};
std::array<std::span<s32>, MaxChannels> output_buffers{};
for (u32 i = 0; i < parameter.channel_count; i++) {
input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
processor.sample_count);
output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
processor.sample_count);
}
auto state_{reinterpret_cast<ReverbInfo::State*>(state)};
if (effect_enabled) {
if (parameter.state == ReverbInfo::ParameterState::Updating) {
UpdateReverbEffectParameter(parameter, *state_);
} else if (parameter.state == ReverbInfo::ParameterState::Initialized) {
InitializeReverbEffect(parameter, *state_, workbuffer, long_size_pre_delay_supported);
}
}
ApplyReverbEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
processor.sample_count);
}
bool ReverbCommand::Verify(const AudioRenderer::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::Renderer
|