1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
|
// SPDX-FileCopyrightText: 2015 Evan Teran
// SPDX-License-Identifier: MIT
// From: https://github.com/eteran/cpp-utilities/blob/master/fixed/include/cpp-utilities/fixed.h
// See also: http://stackoverflow.com/questions/79677/whats-the-best-way-to-do-fixed-point-math
#pragma once
#include <cstddef> // for size_t
#include <cstdint>
#include <exception>
#include <ostream>
#include <type_traits>
#include <common/concepts.h>
namespace Common {
template <size_t I, size_t F>
class FixedPoint;
namespace detail {
// helper templates to make magic with types :)
// these allow us to determine resonable types from
// a desired size, they also let us infer the next largest type
// from a type which is nice for the division op
template <size_t T>
struct type_from_size {
using value_type = void;
using unsigned_type = void;
using signed_type = void;
static constexpr bool is_specialized = false;
};
#if defined(__GNUC__) && defined(__x86_64__) && !defined(__STRICT_ANSI__)
template <>
struct type_from_size<128> {
static constexpr bool is_specialized = true;
static constexpr size_t size = 128;
using value_type = __int128;
using unsigned_type = unsigned __int128;
using signed_type = __int128;
using next_size = type_from_size<256>;
};
#endif
template <>
struct type_from_size<64> {
static constexpr bool is_specialized = true;
static constexpr size_t size = 64;
using value_type = int64_t;
using unsigned_type = std::make_unsigned_t<value_type>;
using signed_type = std::make_signed_t<value_type>;
using next_size = type_from_size<128>;
};
template <>
struct type_from_size<32> {
static constexpr bool is_specialized = true;
static constexpr size_t size = 32;
using value_type = int32_t;
using unsigned_type = std::make_unsigned_t<value_type>;
using signed_type = std::make_signed_t<value_type>;
using next_size = type_from_size<64>;
};
template <>
struct type_from_size<16> {
static constexpr bool is_specialized = true;
static constexpr size_t size = 16;
using value_type = int16_t;
using unsigned_type = std::make_unsigned_t<value_type>;
using signed_type = std::make_signed_t<value_type>;
using next_size = type_from_size<32>;
};
template <>
struct type_from_size<8> {
static constexpr bool is_specialized = true;
static constexpr size_t size = 8;
using value_type = int8_t;
using unsigned_type = std::make_unsigned_t<value_type>;
using signed_type = std::make_signed_t<value_type>;
using next_size = type_from_size<16>;
};
// this is to assist in adding support for non-native base
// types (for adding big-int support), this should be fine
// unless your bit-int class doesn't nicely support casting
template <class B, class N>
constexpr B next_to_base(N rhs) {
return static_cast<B>(rhs);
}
struct divide_by_zero : std::exception {};
template <size_t I, size_t F>
constexpr FixedPoint<I, F> divide(
FixedPoint<I, F> numerator, FixedPoint<I, F> denominator, FixedPoint<I, F>& remainder,
std::enable_if_t<type_from_size<I + F>::next_size::is_specialized>* = nullptr) {
using next_type = typename FixedPoint<I, F>::next_type;
using base_type = typename FixedPoint<I, F>::base_type;
constexpr size_t fractional_bits = FixedPoint<I, F>::fractional_bits;
next_type t(numerator.to_raw());
t <<= fractional_bits;
FixedPoint<I, F> quotient;
quotient = FixedPoint<I, F>::from_base(next_to_base<base_type>(t / denominator.to_raw()));
remainder = FixedPoint<I, F>::from_base(next_to_base<base_type>(t % denominator.to_raw()));
return quotient;
}
template <size_t I, size_t F>
constexpr FixedPoint<I, F> divide(
FixedPoint<I, F> numerator, FixedPoint<I, F> denominator, FixedPoint<I, F>& remainder,
std::enable_if_t<!type_from_size<I + F>::next_size::is_specialized>* = nullptr) {
using unsigned_type = typename FixedPoint<I, F>::unsigned_type;
constexpr int bits = FixedPoint<I, F>::total_bits;
if (denominator == 0) {
throw divide_by_zero();
} else {
int sign = 0;
FixedPoint<I, F> quotient;
if (numerator < 0) {
sign ^= 1;
numerator = -numerator;
}
if (denominator < 0) {
sign ^= 1;
denominator = -denominator;
}
unsigned_type n = numerator.to_raw();
unsigned_type d = denominator.to_raw();
unsigned_type x = 1;
unsigned_type answer = 0;
// egyptian division algorithm
while ((n >= d) && (((d >> (bits - 1)) & 1) == 0)) {
x <<= 1;
d <<= 1;
}
while (x != 0) {
if (n >= d) {
n -= d;
answer += x;
}
x >>= 1;
d >>= 1;
}
unsigned_type l1 = n;
unsigned_type l2 = denominator.to_raw();
// calculate the lower bits (needs to be unsigned)
while (l1 >> (bits - F) > 0) {
l1 >>= 1;
l2 >>= 1;
}
const unsigned_type lo = (l1 << F) / l2;
quotient = FixedPoint<I, F>::from_base((answer << F) | lo);
remainder = n;
if (sign) {
quotient = -quotient;
}
return quotient;
}
}
// this is the usual implementation of multiplication
template <size_t I, size_t F>
constexpr FixedPoint<I, F> multiply(
FixedPoint<I, F> lhs, FixedPoint<I, F> rhs,
std::enable_if_t<type_from_size<I + F>::next_size::is_specialized>* = nullptr) {
using next_type = typename FixedPoint<I, F>::next_type;
using base_type = typename FixedPoint<I, F>::base_type;
constexpr size_t fractional_bits = FixedPoint<I, F>::fractional_bits;
next_type t(static_cast<next_type>(lhs.to_raw()) * static_cast<next_type>(rhs.to_raw()));
t >>= fractional_bits;
return FixedPoint<I, F>::from_base(next_to_base<base_type>(t));
}
// this is the fall back version we use when we don't have a next size
// it is slightly slower, but is more robust since it doesn't
// require and upgraded type
template <size_t I, size_t F>
constexpr FixedPoint<I, F> multiply(
FixedPoint<I, F> lhs, FixedPoint<I, F> rhs,
std::enable_if_t<!type_from_size<I + F>::next_size::is_specialized>* = nullptr) {
using base_type = typename FixedPoint<I, F>::base_type;
constexpr size_t fractional_bits = FixedPoint<I, F>::fractional_bits;
constexpr base_type integer_mask = FixedPoint<I, F>::integer_mask;
constexpr base_type fractional_mask = FixedPoint<I, F>::fractional_mask;
// more costly but doesn't need a larger type
const base_type a_hi = (lhs.to_raw() & integer_mask) >> fractional_bits;
const base_type b_hi = (rhs.to_raw() & integer_mask) >> fractional_bits;
const base_type a_lo = (lhs.to_raw() & fractional_mask);
const base_type b_lo = (rhs.to_raw() & fractional_mask);
const base_type x1 = a_hi * b_hi;
const base_type x2 = a_hi * b_lo;
const base_type x3 = a_lo * b_hi;
const base_type x4 = a_lo * b_lo;
return FixedPoint<I, F>::from_base((x1 << fractional_bits) + (x3 + x2) +
(x4 >> fractional_bits));
}
} // namespace detail
template <size_t I, size_t F>
class FixedPoint {
static_assert(detail::type_from_size<I + F>::is_specialized, "invalid combination of sizes");
public:
static constexpr size_t fractional_bits = F;
static constexpr size_t integer_bits = I;
static constexpr size_t total_bits = I + F;
using base_type_info = detail::type_from_size<total_bits>;
using base_type = typename base_type_info::value_type;
using next_type = typename base_type_info::next_size::value_type;
using unsigned_type = typename base_type_info::unsigned_type;
public:
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverflow"
#endif
static constexpr base_type fractional_mask =
~(static_cast<unsigned_type>(~base_type(0)) << fractional_bits);
static constexpr base_type integer_mask = ~fractional_mask;
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
public:
static constexpr base_type one = base_type(1) << fractional_bits;
public: // constructors
FixedPoint() = default;
FixedPoint(const FixedPoint&) = default;
FixedPoint(FixedPoint&&) noexcept = default;
FixedPoint& operator=(const FixedPoint&) = default;
template <IsArithmetic Number>
constexpr FixedPoint(Number n) : data_(static_cast<base_type>(n * one)) {}
public: // conversion
template <size_t I2, size_t F2>
constexpr explicit FixedPoint(FixedPoint<I2, F2> other) {
static_assert(I2 <= I && F2 <= F, "Scaling conversion can only upgrade types");
using T = FixedPoint<I2, F2>;
const base_type fractional = (other.data_ & T::fractional_mask);
const base_type integer = (other.data_ & T::integer_mask) >> T::fractional_bits;
data_ =
(integer << fractional_bits) | (fractional << (fractional_bits - T::fractional_bits));
}
private:
// this makes it simpler to create a FixedPoint point object from
// a native type without scaling
// use "FixedPoint::from_base" in order to perform this.
struct NoScale {};
constexpr FixedPoint(base_type n, const NoScale&) : data_(n) {}
public:
static constexpr FixedPoint from_base(base_type n) {
return FixedPoint(n, NoScale());
}
public: // comparison operators
friend constexpr auto operator<=>(FixedPoint lhs, FixedPoint rhs) = default;
public: // unary operators
[[nodiscard]] constexpr bool operator!() const {
return !data_;
}
[[nodiscard]] constexpr FixedPoint operator~() const {
// NOTE(eteran): this will often appear to "just negate" the value
// that is not an error, it is because -x == (~x+1)
// and that "+1" is adding an infinitesimally small fraction to the
// complimented value
return FixedPoint::from_base(~data_);
}
[[nodiscard]] constexpr FixedPoint operator-() const {
return FixedPoint::from_base(-data_);
}
[[nodiscard]] constexpr FixedPoint operator+() const {
return FixedPoint::from_base(+data_);
}
constexpr FixedPoint& operator++() {
data_ += one;
return *this;
}
constexpr FixedPoint& operator--() {
data_ -= one;
return *this;
}
constexpr FixedPoint operator++(int) {
FixedPoint tmp(*this);
data_ += one;
return tmp;
}
constexpr FixedPoint operator--(int) {
FixedPoint tmp(*this);
data_ -= one;
return tmp;
}
public: // basic math operators
constexpr FixedPoint& operator+=(FixedPoint n) {
data_ += n.data_;
return *this;
}
constexpr FixedPoint& operator-=(FixedPoint n) {
data_ -= n.data_;
return *this;
}
constexpr FixedPoint& operator*=(FixedPoint n) {
return assign(detail::multiply(*this, n));
}
constexpr FixedPoint& operator/=(FixedPoint n) {
FixedPoint temp;
return assign(detail::divide(*this, n, temp));
}
private:
constexpr FixedPoint& assign(FixedPoint rhs) {
data_ = rhs.data_;
return *this;
}
public: // binary math operators, effects underlying bit pattern since these
// don't really typically make sense for non-integer values
constexpr FixedPoint& operator&=(FixedPoint n) {
data_ &= n.data_;
return *this;
}
constexpr FixedPoint& operator|=(FixedPoint n) {
data_ |= n.data_;
return *this;
}
constexpr FixedPoint& operator^=(FixedPoint n) {
data_ ^= n.data_;
return *this;
}
template <IsIntegral Integer>
constexpr FixedPoint& operator>>=(Integer n) {
data_ >>= n;
return *this;
}
template <IsIntegral Integer>
constexpr FixedPoint& operator<<=(Integer n) {
data_ <<= n;
return *this;
}
public: // conversion to basic types
constexpr void round_up() {
data_ += (data_ & fractional_mask) >> 1;
}
[[nodiscard]] constexpr int to_int() {
round_up();
return static_cast<int>((data_ & integer_mask) >> fractional_bits);
}
[[nodiscard]] constexpr unsigned int to_uint() {
round_up();
return static_cast<unsigned int>((data_ & integer_mask) >> fractional_bits);
}
[[nodiscard]] constexpr int64_t to_long() {
round_up();
return static_cast<int64_t>((data_ & integer_mask) >> fractional_bits);
}
[[nodiscard]] constexpr int to_int_floor() const {
return static_cast<int>((data_ & integer_mask) >> fractional_bits);
}
[[nodiscard]] constexpr int64_t to_long_floor() const {
return static_cast<int64_t>((data_ & integer_mask) >> fractional_bits);
}
[[nodiscard]] constexpr unsigned int to_uint_floor() const {
return static_cast<unsigned int>((data_ & integer_mask) >> fractional_bits);
}
[[nodiscard]] constexpr float to_float() const {
return static_cast<float>(data_) / FixedPoint::one;
}
[[nodiscard]] constexpr double to_double() const {
return static_cast<double>(data_) / FixedPoint::one;
}
[[nodiscard]] constexpr base_type to_raw() const {
return data_;
}
constexpr void clear_int() {
data_ &= fractional_mask;
}
[[nodiscard]] constexpr base_type get_frac() const {
return data_ & fractional_mask;
}
public:
constexpr void swap(FixedPoint& rhs) noexcept {
using std::swap;
swap(data_, rhs.data_);
}
public:
base_type data_;
};
// if we have the same fractional portion, but differing integer portions, we trivially upgrade the
// smaller type
template <size_t I1, size_t I2, size_t F>
constexpr std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>> operator+(
FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
using T = std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l + r;
}
template <size_t I1, size_t I2, size_t F>
constexpr std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>> operator-(
FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
using T = std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l - r;
}
template <size_t I1, size_t I2, size_t F>
constexpr std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>> operator*(
FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
using T = std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l * r;
}
template <size_t I1, size_t I2, size_t F>
constexpr std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>> operator/(
FixedPoint<I1, F> lhs, FixedPoint<I2, F> rhs) {
using T = std::conditional_t<I1 >= I2, FixedPoint<I1, F>, FixedPoint<I2, F>>;
const T l = T::from_base(lhs.to_raw());
const T r = T::from_base(rhs.to_raw());
return l / r;
}
template <size_t I, size_t F>
std::ostream& operator<<(std::ostream& os, FixedPoint<I, F> f) {
os << f.to_double();
return os;
}
// basic math operators
template <size_t I, size_t F>
constexpr FixedPoint<I, F> operator+(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
lhs += rhs;
return lhs;
}
template <size_t I, size_t F>
constexpr FixedPoint<I, F> operator-(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
lhs -= rhs;
return lhs;
}
template <size_t I, size_t F>
constexpr FixedPoint<I, F> operator*(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
lhs *= rhs;
return lhs;
}
template <size_t I, size_t F>
constexpr FixedPoint<I, F> operator/(FixedPoint<I, F> lhs, FixedPoint<I, F> rhs) {
lhs /= rhs;
return lhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator+(FixedPoint<I, F> lhs, Number rhs) {
lhs += FixedPoint<I, F>(rhs);
return lhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator-(FixedPoint<I, F> lhs, Number rhs) {
lhs -= FixedPoint<I, F>(rhs);
return lhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator*(FixedPoint<I, F> lhs, Number rhs) {
lhs *= FixedPoint<I, F>(rhs);
return lhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator/(FixedPoint<I, F> lhs, Number rhs) {
lhs /= FixedPoint<I, F>(rhs);
return lhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator+(Number lhs, FixedPoint<I, F> rhs) {
FixedPoint<I, F> tmp(lhs);
tmp += rhs;
return tmp;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator-(Number lhs, FixedPoint<I, F> rhs) {
FixedPoint<I, F> tmp(lhs);
tmp -= rhs;
return tmp;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator*(Number lhs, FixedPoint<I, F> rhs) {
FixedPoint<I, F> tmp(lhs);
tmp *= rhs;
return tmp;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr FixedPoint<I, F> operator/(Number lhs, FixedPoint<I, F> rhs) {
FixedPoint<I, F> tmp(lhs);
tmp /= rhs;
return tmp;
}
// shift operators
template <size_t I, size_t F, IsIntegral Integer>
constexpr FixedPoint<I, F> operator<<(FixedPoint<I, F> lhs, Integer rhs) {
lhs <<= rhs;
return lhs;
}
template <size_t I, size_t F, IsIntegral Integer>
constexpr FixedPoint<I, F> operator>>(FixedPoint<I, F> lhs, Integer rhs) {
lhs >>= rhs;
return lhs;
}
// comparison operators
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator>(FixedPoint<I, F> lhs, Number rhs) {
return lhs > FixedPoint<I, F>(rhs);
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator<(FixedPoint<I, F> lhs, Number rhs) {
return lhs < FixedPoint<I, F>(rhs);
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator>=(FixedPoint<I, F> lhs, Number rhs) {
return lhs >= FixedPoint<I, F>(rhs);
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator<=(FixedPoint<I, F> lhs, Number rhs) {
return lhs <= FixedPoint<I, F>(rhs);
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator==(FixedPoint<I, F> lhs, Number rhs) {
return lhs == FixedPoint<I, F>(rhs);
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator!=(FixedPoint<I, F> lhs, Number rhs) {
return lhs != FixedPoint<I, F>(rhs);
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator>(Number lhs, FixedPoint<I, F> rhs) {
return FixedPoint<I, F>(lhs) > rhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator<(Number lhs, FixedPoint<I, F> rhs) {
return FixedPoint<I, F>(lhs) < rhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator>=(Number lhs, FixedPoint<I, F> rhs) {
return FixedPoint<I, F>(lhs) >= rhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator<=(Number lhs, FixedPoint<I, F> rhs) {
return FixedPoint<I, F>(lhs) <= rhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator==(Number lhs, FixedPoint<I, F> rhs) {
return FixedPoint<I, F>(lhs) == rhs;
}
template <size_t I, size_t F, IsArithmetic Number>
constexpr bool operator!=(Number lhs, FixedPoint<I, F> rhs) {
return FixedPoint<I, F>(lhs) != rhs;
}
} // namespace Common
|