1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
|
// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0 or later versions.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#pragma once
#include "assert.h"
#include "common_types.h"
#include "code_block.h"
#if defined(_M_X86_64) && !defined(_ARCH_64)
#define _ARCH_64
#endif
#ifdef _ARCH_64
#define PTRBITS 64
#else
#define PTRBITS 32
#endif
namespace Gen
{
enum X64Reg
{
EAX = 0, EBX = 3, ECX = 1, EDX = 2,
ESI = 6, EDI = 7, EBP = 5, ESP = 4,
RAX = 0, RBX = 3, RCX = 1, RDX = 2,
RSI = 6, RDI = 7, RBP = 5, RSP = 4,
R8 = 8, R9 = 9, R10 = 10,R11 = 11,
R12 = 12,R13 = 13,R14 = 14,R15 = 15,
AL = 0, BL = 3, CL = 1, DL = 2,
SIL = 6, DIL = 7, BPL = 5, SPL = 4,
AH = 0x104, BH = 0x107, CH = 0x105, DH = 0x106,
AX = 0, BX = 3, CX = 1, DX = 2,
SI = 6, DI = 7, BP = 5, SP = 4,
XMM0=0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15,
YMM0=0, YMM1, YMM2, YMM3, YMM4, YMM5, YMM6, YMM7,
YMM8, YMM9, YMM10, YMM11, YMM12, YMM13, YMM14, YMM15,
INVALID_REG = 0xFFFFFFFF
};
enum CCFlags
{
CC_O = 0,
CC_NO = 1,
CC_B = 2, CC_C = 2, CC_NAE = 2,
CC_NB = 3, CC_NC = 3, CC_AE = 3,
CC_Z = 4, CC_E = 4,
CC_NZ = 5, CC_NE = 5,
CC_BE = 6, CC_NA = 6,
CC_NBE = 7, CC_A = 7,
CC_S = 8,
CC_NS = 9,
CC_P = 0xA, CC_PE = 0xA,
CC_NP = 0xB, CC_PO = 0xB,
CC_L = 0xC, CC_NGE = 0xC,
CC_NL = 0xD, CC_GE = 0xD,
CC_LE = 0xE, CC_NG = 0xE,
CC_NLE = 0xF, CC_G = 0xF
};
enum
{
NUMGPRs = 16,
NUMXMMs = 16,
};
enum
{
SCALE_NONE = 0,
SCALE_1 = 1,
SCALE_2 = 2,
SCALE_4 = 4,
SCALE_8 = 8,
SCALE_ATREG = 16,
//SCALE_NOBASE_1 is not supported and can be replaced with SCALE_ATREG
SCALE_NOBASE_2 = 34,
SCALE_NOBASE_4 = 36,
SCALE_NOBASE_8 = 40,
SCALE_RIP = 0xFF,
SCALE_IMM8 = 0xF0,
SCALE_IMM16 = 0xF1,
SCALE_IMM32 = 0xF2,
SCALE_IMM64 = 0xF3,
};
enum NormalOp {
nrmADD,
nrmADC,
nrmSUB,
nrmSBB,
nrmAND,
nrmOR ,
nrmXOR,
nrmMOV,
nrmTEST,
nrmCMP,
nrmXCHG,
};
enum {
CMP_EQ = 0,
CMP_LT = 1,
CMP_LE = 2,
CMP_UNORD = 3,
CMP_NEQ = 4,
CMP_NLT = 5,
CMP_NLE = 6,
CMP_ORD = 7,
};
enum FloatOp {
floatLD = 0,
floatST = 2,
floatSTP = 3,
floatLD80 = 5,
floatSTP80 = 7,
floatINVALID = -1,
};
enum FloatRound {
FROUND_NEAREST = 0,
FROUND_FLOOR = 1,
FROUND_CEIL = 2,
FROUND_ZERO = 3,
FROUND_MXCSR = 4,
FROUND_RAISE_PRECISION = 0,
FROUND_IGNORE_PRECISION = 8,
};
class XEmitter;
// RIP addressing does not benefit from micro op fusion on Core arch
struct OpArg
{
OpArg() {} // dummy op arg, used for storage
OpArg(u64 _offset, int _scale, X64Reg rmReg = RAX, X64Reg scaledReg = RAX)
{
operandReg = 0;
scale = (u8)_scale;
offsetOrBaseReg = (u16)rmReg;
indexReg = (u16)scaledReg;
//if scale == 0 never mind offsetting
offset = _offset;
}
bool operator==(const OpArg &b) const
{
return operandReg == b.operandReg && scale == b.scale && offsetOrBaseReg == b.offsetOrBaseReg &&
indexReg == b.indexReg && offset == b.offset;
}
void WriteRex(XEmitter *emit, int opBits, int bits, int customOp = -1) const;
void WriteVex(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, int W = 0) const;
void WriteRest(XEmitter *emit, int extraBytes=0, X64Reg operandReg=INVALID_REG, bool warn_64bit_offset = true) const;
void WriteFloatModRM(XEmitter *emit, FloatOp op);
void WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg operandReg, int bits);
// This one is public - must be written to
u64 offset; // use RIP-relative as much as possible - 64-bit immediates are not available.
u16 operandReg;
void WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const;
bool IsImm() const {return scale == SCALE_IMM8 || scale == SCALE_IMM16 || scale == SCALE_IMM32 || scale == SCALE_IMM64;}
bool IsSimpleReg() const {return scale == SCALE_NONE;}
bool IsSimpleReg(X64Reg reg) const
{
if (!IsSimpleReg())
return false;
return GetSimpleReg() == reg;
}
bool CanDoOpWith(const OpArg &other) const
{
if (IsSimpleReg()) return true;
if (!IsSimpleReg() && !other.IsSimpleReg() && !other.IsImm()) return false;
return true;
}
int GetImmBits() const
{
switch (scale)
{
case SCALE_IMM8: return 8;
case SCALE_IMM16: return 16;
case SCALE_IMM32: return 32;
case SCALE_IMM64: return 64;
default: return -1;
}
}
void SetImmBits(int bits) {
switch (bits)
{
case 8: scale = SCALE_IMM8; break;
case 16: scale = SCALE_IMM16; break;
case 32: scale = SCALE_IMM32; break;
case 64: scale = SCALE_IMM64; break;
}
}
X64Reg GetSimpleReg() const
{
if (scale == SCALE_NONE)
return (X64Reg)offsetOrBaseReg;
else
return INVALID_REG;
}
u32 GetImmValue() const {
return (u32)offset;
}
// For loops.
void IncreaseOffset(int sz) {
offset += sz;
}
private:
u8 scale;
u16 offsetOrBaseReg;
u16 indexReg;
};
inline OpArg M(const void *ptr) {return OpArg((u64)ptr, (int)SCALE_RIP);}
template <typename T>
inline OpArg M(const T *ptr) {return OpArg((u64)(const void *)ptr, (int)SCALE_RIP);}
inline OpArg R(X64Reg value) {return OpArg(0, SCALE_NONE, value);}
inline OpArg MatR(X64Reg value) {return OpArg(0, SCALE_ATREG, value);}
inline OpArg MDisp(X64Reg value, int offset)
{
return OpArg((u32)offset, SCALE_ATREG, value);
}
inline OpArg MComplex(X64Reg base, X64Reg scaled, int scale, int offset)
{
return OpArg(offset, scale, base, scaled);
}
inline OpArg MScaled(X64Reg scaled, int scale, int offset)
{
if (scale == SCALE_1)
return OpArg(offset, SCALE_ATREG, scaled);
else
return OpArg(offset, scale | 0x20, RAX, scaled);
}
inline OpArg MRegSum(X64Reg base, X64Reg offset)
{
return MComplex(base, offset, 1, 0);
}
inline OpArg Imm8 (u8 imm) {return OpArg(imm, SCALE_IMM8);}
inline OpArg Imm16(u16 imm) {return OpArg(imm, SCALE_IMM16);} //rarely used
inline OpArg Imm32(u32 imm) {return OpArg(imm, SCALE_IMM32);}
inline OpArg Imm64(u64 imm) {return OpArg(imm, SCALE_IMM64);}
inline OpArg UImmAuto(u32 imm) {
return OpArg(imm, imm >= 128 ? SCALE_IMM32 : SCALE_IMM8);
}
inline OpArg SImmAuto(s32 imm) {
return OpArg(imm, (imm >= 128 || imm < -128) ? SCALE_IMM32 : SCALE_IMM8);
}
#ifdef _ARCH_64
inline OpArg ImmPtr(const void* imm) {return Imm64((u64)imm);}
#else
inline OpArg ImmPtr(const void* imm) {return Imm32((u32)imm);}
#endif
inline u32 PtrOffset(const void* ptr, const void* base)
{
#ifdef _ARCH_64
s64 distance = (s64)ptr-(s64)base;
if (distance >= 0x80000000LL ||
distance < -0x80000000LL)
{
ASSERT_MSG(0, "pointer offset out of range");
return 0;
}
return (u32)distance;
#else
return (u32)ptr-(u32)base;
#endif
}
//usage: int a[]; ARRAY_OFFSET(a,10)
#define ARRAY_OFFSET(array,index) ((u32)((u64)&(array)[index]-(u64)&(array)[0]))
//usage: struct {int e;} s; STRUCT_OFFSET(s,e)
#define STRUCT_OFFSET(str,elem) ((u32)((u64)&(str).elem-(u64)&(str)))
struct FixupBranch
{
u8 *ptr;
int type; //0 = 8bit 1 = 32bit
};
enum SSECompare
{
EQ = 0,
LT,
LE,
UNORD,
NEQ,
NLT,
NLE,
ORD,
};
typedef const u8* JumpTarget;
class XEmitter
{
friend struct OpArg; // for Write8 etc
private:
u8 *code;
bool flags_locked;
void CheckFlags();
void Rex(int w, int r, int x, int b);
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg);
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg);
void WriteMulDivType(int bits, OpArg src, int ext);
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep = false);
void WriteShift(int bits, OpArg dest, OpArg &shift, int ext);
void WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext);
void WriteMXCSR(OpArg arg, int ext);
void WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes = 0);
void WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteVEXOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes = 0);
void WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, OpArg arg);
void WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2);
void ABI_CalculateFrameSize(u32 mask, size_t rsp_alignment, size_t needed_frame_size, size_t* shadowp, size_t* subtractionp, size_t* xmm_offsetp);
protected:
inline void Write8(u8 value) {*code++ = value;}
inline void Write16(u16 value) {*(u16*)code = (value); code += 2;}
inline void Write32(u32 value) {*(u32*)code = (value); code += 4;}
inline void Write64(u64 value) {*(u64*)code = (value); code += 8;}
public:
XEmitter() { code = nullptr; flags_locked = false; }
XEmitter(u8 *code_ptr) { code = code_ptr; flags_locked = false; }
virtual ~XEmitter() {}
void WriteModRM(int mod, int rm, int reg);
void WriteSIB(int scale, int index, int base);
void SetCodePtr(u8 *ptr);
void ReserveCodeSpace(int bytes);
const u8 *AlignCode4();
const u8 *AlignCode16();
const u8 *AlignCodePage();
const u8 *GetCodePtr() const;
u8 *GetWritableCodePtr();
void LockFlags() { flags_locked = true; }
void UnlockFlags() { flags_locked = false; }
// Looking for one of these? It's BANNED!! Some instructions are slow on modern CPU
// INC, DEC, LOOP, LOOPNE, LOOPE, ENTER, LEAVE, XCHG, XLAT, REP MOVSB/MOVSD, REP SCASD + other string instr.,
// INC and DEC are slow on Intel Core, but not on AMD. They create a
// false flag dependency because they only update a subset of the flags.
// XCHG is SLOW and should be avoided.
// Debug breakpoint
void INT3();
// Do nothing
void NOP(size_t count = 1);
// Save energy in wait-loops on P4 only. Probably not too useful.
void PAUSE();
// Flag control
void STC();
void CLC();
void CMC();
// These two can not be executed in 64-bit mode on early Intel 64-bit CPU:s, only on Core2 and AMD!
void LAHF(); // 3 cycle vector path
void SAHF(); // direct path fast
// Stack control
void PUSH(X64Reg reg);
void POP(X64Reg reg);
void PUSH(int bits, const OpArg ®);
void POP(int bits, const OpArg ®);
void PUSHF();
void POPF();
// Flow control
void RET();
void RET_FAST();
void UD2();
FixupBranch J(bool force5bytes = false);
void JMP(const u8 * addr, bool force5Bytes = false);
void JMP(OpArg arg);
void JMPptr(const OpArg &arg);
void JMPself(); //infinite loop!
#ifdef CALL
#undef CALL
#endif
void CALL(const void *fnptr);
void CALLptr(OpArg arg);
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes = false);
//void J_CC(CCFlags conditionCode, JumpTarget target);
void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes = false);
void SetJumpTarget(const FixupBranch &branch);
void SETcc(CCFlags flag, OpArg dest);
// Note: CMOV brings small if any benefit on current cpus.
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag);
// Fences
void LFENCE();
void MFENCE();
void SFENCE();
// Bit scan
void BSF(int bits, X64Reg dest, OpArg src); //bottom bit to top bit
void BSR(int bits, X64Reg dest, OpArg src); //top bit to bottom bit
// Cache control
enum PrefetchLevel
{
PF_NTA, //Non-temporal (data used once and only once)
PF_T0, //All cache levels
PF_T1, //Levels 2+ (aliased to T0 on AMD)
PF_T2, //Levels 3+ (aliased to T0 on AMD)
};
void PREFETCH(PrefetchLevel level, OpArg arg);
void MOVNTI(int bits, OpArg dest, X64Reg src);
void MOVNTDQ(OpArg arg, X64Reg regOp);
void MOVNTPS(OpArg arg, X64Reg regOp);
void MOVNTPD(OpArg arg, X64Reg regOp);
// Multiplication / division
void MUL(int bits, OpArg src); //UNSIGNED
void IMUL(int bits, OpArg src); //SIGNED
void IMUL(int bits, X64Reg regOp, OpArg src);
void IMUL(int bits, X64Reg regOp, OpArg src, OpArg imm);
void DIV(int bits, OpArg src);
void IDIV(int bits, OpArg src);
// Shift
void ROL(int bits, OpArg dest, OpArg shift);
void ROR(int bits, OpArg dest, OpArg shift);
void RCL(int bits, OpArg dest, OpArg shift);
void RCR(int bits, OpArg dest, OpArg shift);
void SHL(int bits, OpArg dest, OpArg shift);
void SHR(int bits, OpArg dest, OpArg shift);
void SAR(int bits, OpArg dest, OpArg shift);
// Bit Test
void BT(int bits, OpArg dest, OpArg index);
void BTS(int bits, OpArg dest, OpArg index);
void BTR(int bits, OpArg dest, OpArg index);
void BTC(int bits, OpArg dest, OpArg index);
// Double-Precision Shift
void SHRD(int bits, OpArg dest, OpArg src, OpArg shift);
void SHLD(int bits, OpArg dest, OpArg src, OpArg shift);
// Extend EAX into EDX in various ways
void CWD(int bits = 16);
inline void CDQ() {CWD(32);}
inline void CQO() {CWD(64);}
void CBW(int bits = 8);
inline void CWDE() {CBW(16);}
inline void CDQE() {CBW(32);}
// Load effective address
void LEA(int bits, X64Reg dest, OpArg src);
// Integer arithmetic
void NEG (int bits, OpArg src);
void ADD (int bits, const OpArg &a1, const OpArg &a2);
void ADC (int bits, const OpArg &a1, const OpArg &a2);
void SUB (int bits, const OpArg &a1, const OpArg &a2);
void SBB (int bits, const OpArg &a1, const OpArg &a2);
void AND (int bits, const OpArg &a1, const OpArg &a2);
void CMP (int bits, const OpArg &a1, const OpArg &a2);
// Bit operations
void NOT (int bits, OpArg src);
void OR (int bits, const OpArg &a1, const OpArg &a2);
void XOR (int bits, const OpArg &a1, const OpArg &a2);
void MOV (int bits, const OpArg &a1, const OpArg &a2);
void TEST(int bits, const OpArg &a1, const OpArg &a2);
// Are these useful at all? Consider removing.
void XCHG(int bits, const OpArg &a1, const OpArg &a2);
void XCHG_AHAL();
// Byte swapping (32 and 64-bit only).
void BSWAP(int bits, X64Reg reg);
// Sign/zero extension
void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src); //automatically uses MOVSXD if necessary
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src);
// Available only on Atom or >= Haswell so far. Test with cpu_info.bMOVBE.
void MOVBE(int dbits, const OpArg& dest, const OpArg& src);
// Available only on AMD >= Phenom or Intel >= Haswell
void LZCNT(int bits, X64Reg dest, OpArg src);
// Note: this one is actually part of BMI1
void TZCNT(int bits, X64Reg dest, OpArg src);
// WARNING - These two take 11-13 cycles and are VectorPath! (AMD64)
void STMXCSR(OpArg memloc);
void LDMXCSR(OpArg memloc);
// Prefixes
void LOCK();
void REP();
void REPNE();
void FSOverride();
void GSOverride();
// x87
enum x87StatusWordBits {
x87_InvalidOperation = 0x1,
x87_DenormalizedOperand = 0x2,
x87_DivisionByZero = 0x4,
x87_Overflow = 0x8,
x87_Underflow = 0x10,
x87_Precision = 0x20,
x87_StackFault = 0x40,
x87_ErrorSummary = 0x80,
x87_C0 = 0x100,
x87_C1 = 0x200,
x87_C2 = 0x400,
x87_TopOfStack = 0x2000 | 0x1000 | 0x800,
x87_C3 = 0x4000,
x87_FPUBusy = 0x8000,
};
void FLD(int bits, OpArg src);
void FST(int bits, OpArg dest);
void FSTP(int bits, OpArg dest);
void FNSTSW_AX();
void FWAIT();
// SSE/SSE2: Floating point arithmetic
void ADDSS(X64Reg regOp, OpArg arg);
void ADDSD(X64Reg regOp, OpArg arg);
void SUBSS(X64Reg regOp, OpArg arg);
void SUBSD(X64Reg regOp, OpArg arg);
void MULSS(X64Reg regOp, OpArg arg);
void MULSD(X64Reg regOp, OpArg arg);
void DIVSS(X64Reg regOp, OpArg arg);
void DIVSD(X64Reg regOp, OpArg arg);
void MINSS(X64Reg regOp, OpArg arg);
void MINSD(X64Reg regOp, OpArg arg);
void MAXSS(X64Reg regOp, OpArg arg);
void MAXSD(X64Reg regOp, OpArg arg);
void SQRTSS(X64Reg regOp, OpArg arg);
void SQRTSD(X64Reg regOp, OpArg arg);
void RSQRTSS(X64Reg regOp, OpArg arg);
// SSE/SSE2: Floating point bitwise (yes)
void CMPSS(X64Reg regOp, OpArg arg, u8 compare);
void CMPSD(X64Reg regOp, OpArg arg, u8 compare);
inline void CMPEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_EQ); }
inline void CMPLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LT); }
inline void CMPLESS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_LE); }
inline void CMPUNORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_UNORD); }
inline void CMPNEQSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NEQ); }
inline void CMPNLTSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_NLT); }
inline void CMPORDSS(X64Reg regOp, OpArg arg) { CMPSS(regOp, arg, CMP_ORD); }
// SSE/SSE2: Floating point packed arithmetic (x4 for float, x2 for double)
void ADDPS(X64Reg regOp, OpArg arg);
void ADDPD(X64Reg regOp, OpArg arg);
void SUBPS(X64Reg regOp, OpArg arg);
void SUBPD(X64Reg regOp, OpArg arg);
void CMPPS(X64Reg regOp, OpArg arg, u8 compare);
void CMPPD(X64Reg regOp, OpArg arg, u8 compare);
void MULPS(X64Reg regOp, OpArg arg);
void MULPD(X64Reg regOp, OpArg arg);
void DIVPS(X64Reg regOp, OpArg arg);
void DIVPD(X64Reg regOp, OpArg arg);
void MINPS(X64Reg regOp, OpArg arg);
void MINPD(X64Reg regOp, OpArg arg);
void MAXPS(X64Reg regOp, OpArg arg);
void MAXPD(X64Reg regOp, OpArg arg);
void SQRTPS(X64Reg regOp, OpArg arg);
void SQRTPD(X64Reg regOp, OpArg arg);
void RCPPS(X64Reg regOp, OpArg arg);
void RSQRTPS(X64Reg regOp, OpArg arg);
// SSE/SSE2: Floating point packed bitwise (x4 for float, x2 for double)
void ANDPS(X64Reg regOp, OpArg arg);
void ANDPD(X64Reg regOp, OpArg arg);
void ANDNPS(X64Reg regOp, OpArg arg);
void ANDNPD(X64Reg regOp, OpArg arg);
void ORPS(X64Reg regOp, OpArg arg);
void ORPD(X64Reg regOp, OpArg arg);
void XORPS(X64Reg regOp, OpArg arg);
void XORPD(X64Reg regOp, OpArg arg);
// SSE/SSE2: Shuffle components. These are tricky - see Intel documentation.
void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle);
void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle);
// SSE/SSE2: Useful alternative to shuffle in some cases.
void MOVDDUP(X64Reg regOp, OpArg arg);
// TODO: Actually implement
#if 0
// SSE3: Horizontal operations in SIMD registers. Could be useful for various VFPU things like dot products...
void ADDSUBPS(X64Reg dest, OpArg src);
void ADDSUBPD(X64Reg dest, OpArg src);
void HADDPD(X64Reg dest, OpArg src);
void HSUBPS(X64Reg dest, OpArg src);
void HSUBPD(X64Reg dest, OpArg src);
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
void DPPD(X64Reg dest, OpArg src, u8 arg);
// These are probably useful for VFPU emulation.
void INSERTPS(X64Reg dest, OpArg src, u8 arg);
void EXTRACTPS(OpArg dest, X64Reg src, u8 arg);
#endif
// SSE3: Horizontal operations in SIMD registers. Very slow! shufps-based code beats it handily on Ivy.
void HADDPS(X64Reg dest, OpArg src);
// SSE4: Further horizontal operations - dot products. These are weirdly flexible, the arg contains both a read mask and a write "mask".
void DPPS(X64Reg dest, OpArg src, u8 arg);
void UNPCKLPS(X64Reg dest, OpArg src);
void UNPCKHPS(X64Reg dest, OpArg src);
void UNPCKLPD(X64Reg dest, OpArg src);
void UNPCKHPD(X64Reg dest, OpArg src);
// SSE/SSE2: Compares.
void COMISS(X64Reg regOp, OpArg arg);
void COMISD(X64Reg regOp, OpArg arg);
void UCOMISS(X64Reg regOp, OpArg arg);
void UCOMISD(X64Reg regOp, OpArg arg);
// SSE/SSE2: Moves. Use the right data type for your data, in most cases.
void MOVAPS(X64Reg regOp, OpArg arg);
void MOVAPD(X64Reg regOp, OpArg arg);
void MOVAPS(OpArg arg, X64Reg regOp);
void MOVAPD(OpArg arg, X64Reg regOp);
void MOVUPS(X64Reg regOp, OpArg arg);
void MOVUPD(X64Reg regOp, OpArg arg);
void MOVUPS(OpArg arg, X64Reg regOp);
void MOVUPD(OpArg arg, X64Reg regOp);
void MOVDQA(X64Reg regOp, OpArg arg);
void MOVDQA(OpArg arg, X64Reg regOp);
void MOVDQU(X64Reg regOp, OpArg arg);
void MOVDQU(OpArg arg, X64Reg regOp);
void MOVSS(X64Reg regOp, OpArg arg);
void MOVSD(X64Reg regOp, OpArg arg);
void MOVSS(OpArg arg, X64Reg regOp);
void MOVSD(OpArg arg, X64Reg regOp);
void MOVLPS(X64Reg regOp, OpArg arg);
void MOVLPD(X64Reg regOp, OpArg arg);
void MOVLPS(OpArg arg, X64Reg regOp);
void MOVLPD(OpArg arg, X64Reg regOp);
void MOVHPS(X64Reg regOp, OpArg arg);
void MOVHPD(X64Reg regOp, OpArg arg);
void MOVHPS(OpArg arg, X64Reg regOp);
void MOVHPD(OpArg arg, X64Reg regOp);
void MOVHLPS(X64Reg regOp1, X64Reg regOp2);
void MOVLHPS(X64Reg regOp1, X64Reg regOp2);
void MOVD_xmm(X64Reg dest, const OpArg &arg);
void MOVQ_xmm(X64Reg dest, OpArg arg);
void MOVD_xmm(const OpArg &arg, X64Reg src);
void MOVQ_xmm(OpArg arg, X64Reg src);
// SSE/SSE2: Generates a mask from the high bits of the components of the packed register in question.
void MOVMSKPS(X64Reg dest, OpArg arg);
void MOVMSKPD(X64Reg dest, OpArg arg);
// SSE2: Selective byte store, mask in src register. EDI/RDI specifies store address. This is a weird one.
void MASKMOVDQU(X64Reg dest, X64Reg src);
void LDDQU(X64Reg dest, OpArg src);
// SSE/SSE2: Data type conversions.
void CVTPS2PD(X64Reg dest, OpArg src);
void CVTPD2PS(X64Reg dest, OpArg src);
void CVTSS2SD(X64Reg dest, OpArg src);
void CVTSI2SS(X64Reg dest, OpArg src);
void CVTSD2SS(X64Reg dest, OpArg src);
void CVTSI2SD(X64Reg dest, OpArg src);
void CVTDQ2PD(X64Reg regOp, OpArg arg);
void CVTPD2DQ(X64Reg regOp, OpArg arg);
void CVTDQ2PS(X64Reg regOp, OpArg arg);
void CVTPS2DQ(X64Reg regOp, OpArg arg);
void CVTTPS2DQ(X64Reg regOp, OpArg arg);
void CVTTPD2DQ(X64Reg regOp, OpArg arg);
// Destinations are X64 regs (rax, rbx, ...) for these instructions.
void CVTSS2SI(X64Reg xregdest, OpArg src);
void CVTSD2SI(X64Reg xregdest, OpArg src);
void CVTTSS2SI(X64Reg xregdest, OpArg arg);
void CVTTSD2SI(X64Reg xregdest, OpArg arg);
// SSE2: Packed integer instructions
void PACKSSDW(X64Reg dest, OpArg arg);
void PACKSSWB(X64Reg dest, OpArg arg);
void PACKUSDW(X64Reg dest, OpArg arg);
void PACKUSWB(X64Reg dest, OpArg arg);
void PUNPCKLBW(X64Reg dest, const OpArg &arg);
void PUNPCKLWD(X64Reg dest, const OpArg &arg);
void PUNPCKLDQ(X64Reg dest, const OpArg &arg);
void PUNPCKLQDQ(X64Reg dest, const OpArg &arg);
void PTEST(X64Reg dest, OpArg arg);
void PAND(X64Reg dest, OpArg arg);
void PANDN(X64Reg dest, OpArg arg);
void PXOR(X64Reg dest, OpArg arg);
void POR(X64Reg dest, OpArg arg);
void PADDB(X64Reg dest, OpArg arg);
void PADDW(X64Reg dest, OpArg arg);
void PADDD(X64Reg dest, OpArg arg);
void PADDQ(X64Reg dest, OpArg arg);
void PADDSB(X64Reg dest, OpArg arg);
void PADDSW(X64Reg dest, OpArg arg);
void PADDUSB(X64Reg dest, OpArg arg);
void PADDUSW(X64Reg dest, OpArg arg);
void PSUBB(X64Reg dest, OpArg arg);
void PSUBW(X64Reg dest, OpArg arg);
void PSUBD(X64Reg dest, OpArg arg);
void PSUBQ(X64Reg dest, OpArg arg);
void PSUBSB(X64Reg dest, OpArg arg);
void PSUBSW(X64Reg dest, OpArg arg);
void PSUBUSB(X64Reg dest, OpArg arg);
void PSUBUSW(X64Reg dest, OpArg arg);
void PAVGB(X64Reg dest, OpArg arg);
void PAVGW(X64Reg dest, OpArg arg);
void PCMPEQB(X64Reg dest, OpArg arg);
void PCMPEQW(X64Reg dest, OpArg arg);
void PCMPEQD(X64Reg dest, OpArg arg);
void PCMPGTB(X64Reg dest, OpArg arg);
void PCMPGTW(X64Reg dest, OpArg arg);
void PCMPGTD(X64Reg dest, OpArg arg);
void PEXTRW(X64Reg dest, OpArg arg, u8 subreg);
void PINSRW(X64Reg dest, OpArg arg, u8 subreg);
void PMADDWD(X64Reg dest, OpArg arg);
void PSADBW(X64Reg dest, OpArg arg);
void PMAXSW(X64Reg dest, OpArg arg);
void PMAXUB(X64Reg dest, OpArg arg);
void PMINSW(X64Reg dest, OpArg arg);
void PMINUB(X64Reg dest, OpArg arg);
// SSE4: More MAX/MIN instructions.
void PMINSB(X64Reg dest, OpArg arg);
void PMINSD(X64Reg dest, OpArg arg);
void PMINUW(X64Reg dest, OpArg arg);
void PMINUD(X64Reg dest, OpArg arg);
void PMAXSB(X64Reg dest, OpArg arg);
void PMAXSD(X64Reg dest, OpArg arg);
void PMAXUW(X64Reg dest, OpArg arg);
void PMAXUD(X64Reg dest, OpArg arg);
void PMOVMSKB(X64Reg dest, OpArg arg);
void PSHUFD(X64Reg dest, OpArg arg, u8 shuffle);
void PSHUFB(X64Reg dest, OpArg arg);
void PSHUFLW(X64Reg dest, OpArg arg, u8 shuffle);
void PSHUFHW(X64Reg dest, OpArg arg, u8 shuffle);
void PSRLW(X64Reg reg, int shift);
void PSRLD(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, int shift);
void PSRLQ(X64Reg reg, OpArg arg);
void PSRLDQ(X64Reg reg, int shift);
void PSLLW(X64Reg reg, int shift);
void PSLLD(X64Reg reg, int shift);
void PSLLQ(X64Reg reg, int shift);
void PSLLDQ(X64Reg reg, int shift);
void PSRAW(X64Reg reg, int shift);
void PSRAD(X64Reg reg, int shift);
// SSE4: data type conversions
void PMOVSXBW(X64Reg dest, OpArg arg);
void PMOVSXBD(X64Reg dest, OpArg arg);
void PMOVSXBQ(X64Reg dest, OpArg arg);
void PMOVSXWD(X64Reg dest, OpArg arg);
void PMOVSXWQ(X64Reg dest, OpArg arg);
void PMOVSXDQ(X64Reg dest, OpArg arg);
void PMOVZXBW(X64Reg dest, OpArg arg);
void PMOVZXBD(X64Reg dest, OpArg arg);
void PMOVZXBQ(X64Reg dest, OpArg arg);
void PMOVZXWD(X64Reg dest, OpArg arg);
void PMOVZXWQ(X64Reg dest, OpArg arg);
void PMOVZXDQ(X64Reg dest, OpArg arg);
// SSE4: variable blend instructions (xmm0 implicit argument)
void PBLENDVB(X64Reg dest, OpArg arg);
void BLENDVPS(X64Reg dest, OpArg arg);
void BLENDVPD(X64Reg dest, OpArg arg);
void BLENDPS(X64Reg dest, const OpArg& arg, u8 blend);
void BLENDPD(X64Reg dest, const OpArg& arg, u8 blend);
// SSE4: rounding (see FloatRound for mode or use ROUNDNEARSS, etc. helpers.)
void ROUNDSS(X64Reg dest, OpArg arg, u8 mode);
void ROUNDSD(X64Reg dest, OpArg arg, u8 mode);
void ROUNDPS(X64Reg dest, OpArg arg, u8 mode);
void ROUNDPD(X64Reg dest, OpArg arg, u8 mode);
inline void ROUNDNEARSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROSS(X64Reg dest, OpArg arg) { ROUNDSS(dest, arg, FROUND_ZERO); }
inline void ROUNDNEARSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROSD(X64Reg dest, OpArg arg) { ROUNDSD(dest, arg, FROUND_ZERO); }
inline void ROUNDNEARPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROPS(X64Reg dest, OpArg arg) { ROUNDPS(dest, arg, FROUND_ZERO); }
inline void ROUNDNEARPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_NEAREST); }
inline void ROUNDFLOORPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_FLOOR); }
inline void ROUNDCEILPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_CEIL); }
inline void ROUNDZEROPD(X64Reg dest, OpArg arg) { ROUNDPD(dest, arg, FROUND_ZERO); }
// AVX
void VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VADDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSUBPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VMULPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VDIVPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VSHUFPD(X64Reg regOp1, X64Reg regOp2, OpArg arg, u8 shuffle);
void VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDNPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VANDNPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VXORPS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VXORPD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VPXOR(X64Reg regOp1, X64Reg regOp2, OpArg arg);
// FMA3
void VFMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
void VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, OpArg arg);
// VEX GPR instructions
void SARX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void SHLX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void SHRX(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void RORX(int bits, X64Reg regOp, OpArg arg, u8 rotate);
void PEXT(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void PDEP(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void MULX(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void BZHI(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void BLSR(int bits, X64Reg regOp, OpArg arg);
void BLSMSK(int bits, X64Reg regOp, OpArg arg);
void BLSI(int bits, X64Reg regOp, OpArg arg);
void BEXTR(int bits, X64Reg regOp1, OpArg arg, X64Reg regOp2);
void ANDN(int bits, X64Reg regOp1, X64Reg regOp2, OpArg arg);
void RDTSC();
// Utility functions
// The difference between this and CALL is that this aligns the stack
// where appropriate.
void ABI_CallFunction(const void *func);
template <typename T>
void ABI_CallFunction(T (*func)()) {
ABI_CallFunction((const void *)func);
}
void ABI_CallFunction(const u8 *func) {
ABI_CallFunction((const void *)func);
}
void ABI_CallFunctionC16(const void *func, u16 param1);
void ABI_CallFunctionCC16(const void *func, u32 param1, u16 param2);
// These only support u32 parameters, but that's enough for a lot of uses.
// These will destroy the 1 or 2 first "parameter regs".
void ABI_CallFunctionC(const void *func, u32 param1);
void ABI_CallFunctionCC(const void *func, u32 param1, u32 param2);
void ABI_CallFunctionCCC(const void *func, u32 param1, u32 param2, u32 param3);
void ABI_CallFunctionCCP(const void *func, u32 param1, u32 param2, void *param3);
void ABI_CallFunctionCCCP(const void *func, u32 param1, u32 param2, u32 param3, void *param4);
void ABI_CallFunctionP(const void *func, void *param1);
void ABI_CallFunctionPA(const void *func, void *param1, const Gen::OpArg &arg2);
void ABI_CallFunctionPAA(const void *func, void *param1, const Gen::OpArg &arg2, const Gen::OpArg &arg3);
void ABI_CallFunctionPPC(const void *func, void *param1, void *param2, u32 param3);
void ABI_CallFunctionAC(const void *func, const Gen::OpArg &arg1, u32 param2);
void ABI_CallFunctionACC(const void *func, const Gen::OpArg &arg1, u32 param2, u32 param3);
void ABI_CallFunctionA(const void *func, const Gen::OpArg &arg1);
void ABI_CallFunctionAA(const void *func, const Gen::OpArg &arg1, const Gen::OpArg &arg2);
// Pass a register as a parameter.
void ABI_CallFunctionR(const void *func, X64Reg reg1);
void ABI_CallFunctionRR(const void *func, X64Reg reg1, X64Reg reg2);
template <typename Tr, typename T1>
void ABI_CallFunctionC(Tr (*func)(T1), u32 param1) {
ABI_CallFunctionC((const void *)func, param1);
}
// A function that doesn't have any control over what it will do to regs,
// such as the dispatcher, should be surrounded by these.
void ABI_PushAllCalleeSavedRegsAndAdjustStack();
void ABI_PopAllCalleeSavedRegsAndAdjustStack();
// A function that doesn't know anything about it's surroundings, should
// be surrounded by these to establish a safe environment, where it can roam free.
// An example is a backpatch injected function.
void ABI_PushAllCallerSavedRegsAndAdjustStack();
void ABI_PopAllCallerSavedRegsAndAdjustStack();
unsigned int ABI_GetAlignedFrameSize(unsigned int frameSize);
void ABI_AlignStack(unsigned int frameSize);
void ABI_RestoreStack(unsigned int frameSize);
// Sets up a __cdecl function.
// Only x64 really needs the parameter count.
void ABI_EmitPrologue(int maxCallParams);
void ABI_EmitEpilogue(int maxCallParams);
#ifdef _M_IX86
inline int ABI_GetNumXMMRegs() { return 8; }
#else
inline int ABI_GetNumXMMRegs() { return 16; }
#endif
}; // class XEmitter
// Everything that needs to generate X86 code should inherit from this.
// You get memory management for free, plus, you can use all the MOV etc functions without
// having to prefix them with gen-> or something similar.
class XCodeBlock : public CodeBlock<XEmitter> {
public:
void PoisonMemory() override;
};
} // namespace
|