summaryrefslogtreecommitdiffstats
path: root/src/core/cpu_core_manager.cpp
blob: e022e6a608173e6037367fb3b15ba72af1ecf762 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "common/assert.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/cpu_core_manager.h"
#include "core/gdbstub/gdbstub.h"
#include "core/settings.h"

namespace Core {
namespace {
void RunCpuCore(const System& system, Cpu& cpu_state) {
    while (system.IsPoweredOn()) {
        cpu_state.RunLoop(true);
    }
}
} // Anonymous namespace

CpuCoreManager::CpuCoreManager(System& system) : system{system} {}
CpuCoreManager::~CpuCoreManager() = default;

void CpuCoreManager::Initialize() {
    barrier = std::make_unique<CpuBarrier>();
    exclusive_monitor = Cpu::MakeExclusiveMonitor(cores.size());

    for (std::size_t index = 0; index < cores.size(); ++index) {
        cores[index] = std::make_unique<Cpu>(system, *exclusive_monitor, *barrier, index);
    }
}

void CpuCoreManager::StartThreads() {
    // Create threads for CPU cores 1-3, and build thread_to_cpu map
    // CPU core 0 is run on the main thread
    thread_to_cpu[std::this_thread::get_id()] = cores[0].get();
    if (!Settings::values.use_multi_core) {
        return;
    }

    for (std::size_t index = 0; index < core_threads.size(); ++index) {
        core_threads[index] = std::make_unique<std::thread>(RunCpuCore, std::cref(system),
                                                            std::ref(*cores[index + 1]));
        thread_to_cpu[core_threads[index]->get_id()] = cores[index + 1].get();
    }
}

void CpuCoreManager::Shutdown() {
    barrier->NotifyEnd();
    if (Settings::values.use_multi_core) {
        for (auto& thread : core_threads) {
            thread->join();
            thread.reset();
        }
    }

    thread_to_cpu.clear();
    for (auto& cpu_core : cores) {
        cpu_core.reset();
    }

    exclusive_monitor.reset();
    barrier.reset();
}

Cpu& CpuCoreManager::GetCore(std::size_t index) {
    return *cores.at(index);
}

const Cpu& CpuCoreManager::GetCore(std::size_t index) const {
    return *cores.at(index);
}

ExclusiveMonitor& CpuCoreManager::GetExclusiveMonitor() {
    return *exclusive_monitor;
}

const ExclusiveMonitor& CpuCoreManager::GetExclusiveMonitor() const {
    return *exclusive_monitor;
}

Cpu& CpuCoreManager::GetCurrentCore() {
    if (Settings::values.use_multi_core) {
        const auto& search = thread_to_cpu.find(std::this_thread::get_id());
        ASSERT(search != thread_to_cpu.end());
        ASSERT(search->second);
        return *search->second;
    }

    // Otherwise, use single-threaded mode active_core variable
    return *cores[active_core];
}

const Cpu& CpuCoreManager::GetCurrentCore() const {
    if (Settings::values.use_multi_core) {
        const auto& search = thread_to_cpu.find(std::this_thread::get_id());
        ASSERT(search != thread_to_cpu.end());
        ASSERT(search->second);
        return *search->second;
    }

    // Otherwise, use single-threaded mode active_core variable
    return *cores[active_core];
}

void CpuCoreManager::RunLoop(bool tight_loop) {
    // Update thread_to_cpu in case Core 0 is run from a different host thread
    thread_to_cpu[std::this_thread::get_id()] = cores[0].get();

    if (GDBStub::IsServerEnabled()) {
        GDBStub::HandlePacket();

        // If the loop is halted and we want to step, use a tiny (1) number of instructions to
        // execute. Otherwise, get out of the loop function.
        if (GDBStub::GetCpuHaltFlag()) {
            if (GDBStub::GetCpuStepFlag()) {
                tight_loop = false;
            } else {
                return;
            }
        }
    }

    auto& core_timing = system.CoreTiming();
    core_timing.ResetRun();
    bool keep_running{};
    do {
        keep_running = false;
        for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
            core_timing.SwitchContext(active_core);
            if (core_timing.CurrentContextCanRun()) {
                cores[active_core]->RunLoop(tight_loop);
            }
            keep_running |= core_timing.CurrentContextCanRun();
        }
    } while (keep_running);

    if (GDBStub::IsServerEnabled()) {
        GDBStub::SetCpuStepFlag(false);
    }
}

void CpuCoreManager::InvalidateAllInstructionCaches() {
    for (auto& cpu : cores) {
        cpu->ArmInterface().ClearInstructionCache();
    }
}

} // namespace Core