summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/hle_ipc.cpp
blob: 0a2de4270a6d0590aaeae71810a5986dc65fdbfb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <array>
#include <sstream>
#include <utility>

#include <boost/range/algorithm_ext/erase.hpp>

#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "core/hle/ipc_helpers.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/hle_ipc.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/server_session.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/kernel/writable_event.h"
#include "core/memory.h"

namespace Kernel {

SessionRequestHandler::SessionRequestHandler() = default;

SessionRequestHandler::~SessionRequestHandler() = default;

void SessionRequestHandler::ClientConnected(std::shared_ptr<ServerSession> server_session) {
    server_session->SetHleHandler(shared_from_this());
    connected_sessions.push_back(std::move(server_session));
}

void SessionRequestHandler::ClientDisconnected(
    const std::shared_ptr<ServerSession>& server_session) {
    server_session->SetHleHandler(nullptr);
    boost::range::remove_erase(connected_sessions, server_session);
}

std::shared_ptr<WritableEvent> HLERequestContext::SleepClientThread(
    const std::string& reason, u64 timeout, WakeupCallback&& callback,
    std::shared_ptr<WritableEvent> writable_event) {
    // Put the client thread to sleep until the wait event is signaled or the timeout expires.

    if (!writable_event) {
        // Create event if not provided
        const auto pair = WritableEvent::CreateEventPair(kernel, "HLE Pause Event: " + reason);
        writable_event = pair.writable;
    }

    {
        Handle event_handle = InvalidHandle;
        SchedulerLockAndSleep lock(kernel, event_handle, thread.get(), static_cast<s64>(timeout));
        thread->SetHLECallback(
            [context = *this, callback](std::shared_ptr<Thread> thread) mutable -> bool {
                ThreadWakeupReason reason = thread->GetSignalingResult() == RESULT_TIMEOUT
                                                ? ThreadWakeupReason::Timeout
                                                : ThreadWakeupReason::Signal;
                callback(thread, context, reason);
                context.WriteToOutgoingCommandBuffer(*thread);
                return true;
            });
        const auto readable_event{writable_event->GetReadableEvent()};
        writable_event->Clear();
        thread->SetHLESyncObject(readable_event.get());
        thread->SetStatus(ThreadStatus::WaitHLEEvent);
        thread->SetSynchronizationResults(nullptr, RESULT_TIMEOUT);
        readable_event->AddWaitingThread(thread);
        lock.Release();
        thread->SetHLETimeEvent(event_handle);
    }

    is_thread_waiting = true;

    return writable_event;
}

HLERequestContext::HLERequestContext(KernelCore& kernel, Core::Memory::Memory& memory,
                                     std::shared_ptr<ServerSession> server_session,
                                     std::shared_ptr<Thread> thread)
    : server_session(std::move(server_session)),
      thread(std::move(thread)), kernel{kernel}, memory{memory} {
    cmd_buf[0] = 0;
}

HLERequestContext::~HLERequestContext() = default;

void HLERequestContext::ParseCommandBuffer(const HandleTable& handle_table, u32_le* src_cmdbuf,
                                           bool incoming) {
    IPC::RequestParser rp(src_cmdbuf);
    command_header = rp.PopRaw<IPC::CommandHeader>();

    if (command_header->type == IPC::CommandType::Close) {
        // Close does not populate the rest of the IPC header
        return;
    }

    // If handle descriptor is present, add size of it
    if (command_header->enable_handle_descriptor) {
        handle_descriptor_header = rp.PopRaw<IPC::HandleDescriptorHeader>();
        if (handle_descriptor_header->send_current_pid) {
            rp.Skip(2, false);
        }
        if (incoming) {
            // Populate the object lists with the data in the IPC request.
            for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_copy; ++handle) {
                copy_objects.push_back(handle_table.GetGeneric(rp.Pop<Handle>()));
            }
            for (u32 handle = 0; handle < handle_descriptor_header->num_handles_to_move; ++handle) {
                move_objects.push_back(handle_table.GetGeneric(rp.Pop<Handle>()));
            }
        } else {
            // For responses we just ignore the handles, they're empty and will be populated when
            // translating the response.
            rp.Skip(handle_descriptor_header->num_handles_to_copy, false);
            rp.Skip(handle_descriptor_header->num_handles_to_move, false);
        }
    }

    for (unsigned i = 0; i < command_header->num_buf_x_descriptors; ++i) {
        buffer_x_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorX>());
    }
    for (unsigned i = 0; i < command_header->num_buf_a_descriptors; ++i) {
        buffer_a_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
    }
    for (unsigned i = 0; i < command_header->num_buf_b_descriptors; ++i) {
        buffer_b_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
    }
    for (unsigned i = 0; i < command_header->num_buf_w_descriptors; ++i) {
        buffer_w_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorABW>());
    }

    buffer_c_offset = rp.GetCurrentOffset() + command_header->data_size;

    // Padding to align to 16 bytes
    rp.AlignWithPadding();

    if (Session()->IsDomain() && ((command_header->type == IPC::CommandType::Request ||
                                   command_header->type == IPC::CommandType::RequestWithContext) ||
                                  !incoming)) {
        // If this is an incoming message, only CommandType "Request" has a domain header
        // All outgoing domain messages have the domain header, if only incoming has it
        if (incoming || domain_message_header) {
            domain_message_header = rp.PopRaw<IPC::DomainMessageHeader>();
        } else {
            if (Session()->IsDomain()) {
                LOG_WARNING(IPC, "Domain request has no DomainMessageHeader!");
            }
        }
    }

    data_payload_header = rp.PopRaw<IPC::DataPayloadHeader>();

    data_payload_offset = rp.GetCurrentOffset();

    if (domain_message_header && domain_message_header->command ==
                                     IPC::DomainMessageHeader::CommandType::CloseVirtualHandle) {
        // CloseVirtualHandle command does not have SFC* or any data
        return;
    }

    if (incoming) {
        ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'I'));
    } else {
        ASSERT(data_payload_header->magic == Common::MakeMagic('S', 'F', 'C', 'O'));
    }

    rp.SetCurrentOffset(buffer_c_offset);

    // For Inline buffers, the response data is written directly to buffer_c_offset
    // and in this case we don't have any BufferDescriptorC on the request.
    if (command_header->buf_c_descriptor_flags >
        IPC::CommandHeader::BufferDescriptorCFlag::InlineDescriptor) {
        if (command_header->buf_c_descriptor_flags ==
            IPC::CommandHeader::BufferDescriptorCFlag::OneDescriptor) {
            buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
        } else {
            unsigned num_buf_c_descriptors =
                static_cast<unsigned>(command_header->buf_c_descriptor_flags.Value()) - 2;

            // This is used to detect possible underflows, in case something is broken
            // with the two ifs above and the flags value is == 0 || == 1.
            ASSERT(num_buf_c_descriptors < 14);

            for (unsigned i = 0; i < num_buf_c_descriptors; ++i) {
                buffer_c_desciptors.push_back(rp.PopRaw<IPC::BufferDescriptorC>());
            }
        }
    }

    rp.SetCurrentOffset(data_payload_offset);

    command = rp.Pop<u32_le>();
    rp.Skip(1, false); // The command is actually an u64, but we don't use the high part.
}

ResultCode HLERequestContext::PopulateFromIncomingCommandBuffer(const HandleTable& handle_table,
                                                                u32_le* src_cmdbuf) {
    ParseCommandBuffer(handle_table, src_cmdbuf, true);
    if (command_header->type == IPC::CommandType::Close) {
        // Close does not populate the rest of the IPC header
        return RESULT_SUCCESS;
    }

    // The data_size already includes the payload header, the padding and the domain header.
    std::size_t size = data_payload_offset + command_header->data_size -
                       sizeof(IPC::DataPayloadHeader) / sizeof(u32) - 4;
    if (domain_message_header)
        size -= sizeof(IPC::DomainMessageHeader) / sizeof(u32);
    std::copy_n(src_cmdbuf, size, cmd_buf.begin());
    return RESULT_SUCCESS;
}

ResultCode HLERequestContext::WriteToOutgoingCommandBuffer(Thread& thread) {
    auto& owner_process = *thread.GetOwnerProcess();
    auto& handle_table = owner_process.GetHandleTable();

    std::array<u32, IPC::COMMAND_BUFFER_LENGTH> dst_cmdbuf;
    memory.ReadBlock(owner_process, thread.GetTLSAddress(), dst_cmdbuf.data(),
                     dst_cmdbuf.size() * sizeof(u32));

    // The header was already built in the internal command buffer. Attempt to parse it to verify
    // the integrity and then copy it over to the target command buffer.
    ParseCommandBuffer(handle_table, cmd_buf.data(), false);

    // The data_size already includes the payload header, the padding and the domain header.
    std::size_t size = data_payload_offset + command_header->data_size -
                       sizeof(IPC::DataPayloadHeader) / sizeof(u32) - 4;
    if (domain_message_header)
        size -= sizeof(IPC::DomainMessageHeader) / sizeof(u32);

    std::copy_n(cmd_buf.begin(), size, dst_cmdbuf.data());

    if (command_header->enable_handle_descriptor) {
        ASSERT_MSG(!move_objects.empty() || !copy_objects.empty(),
                   "Handle descriptor bit set but no handles to translate");
        // We write the translated handles at a specific offset in the command buffer, this space
        // was already reserved when writing the header.
        std::size_t current_offset =
            (sizeof(IPC::CommandHeader) + sizeof(IPC::HandleDescriptorHeader)) / sizeof(u32);
        ASSERT_MSG(!handle_descriptor_header->send_current_pid, "Sending PID is not implemented");

        ASSERT(copy_objects.size() == handle_descriptor_header->num_handles_to_copy);
        ASSERT(move_objects.size() == handle_descriptor_header->num_handles_to_move);

        // We don't make a distinction between copy and move handles when translating since HLE
        // services don't deal with handles directly. However, the guest applications might check
        // for specific values in each of these descriptors.
        for (auto& object : copy_objects) {
            ASSERT(object != nullptr);
            dst_cmdbuf[current_offset++] = handle_table.Create(object).Unwrap();
        }

        for (auto& object : move_objects) {
            ASSERT(object != nullptr);
            dst_cmdbuf[current_offset++] = handle_table.Create(object).Unwrap();
        }
    }

    // TODO(Subv): Translate the X/A/B/W buffers.

    if (Session()->IsDomain() && domain_message_header) {
        ASSERT(domain_message_header->num_objects == domain_objects.size());
        // Write the domain objects to the command buffer, these go after the raw untranslated data.
        // TODO(Subv): This completely ignores C buffers.
        std::size_t domain_offset = size - domain_message_header->num_objects;

        for (const auto& object : domain_objects) {
            server_session->AppendDomainRequestHandler(object);
            dst_cmdbuf[domain_offset++] =
                static_cast<u32_le>(server_session->NumDomainRequestHandlers());
        }
    }

    // Copy the translated command buffer back into the thread's command buffer area.
    memory.WriteBlock(owner_process, thread.GetTLSAddress(), dst_cmdbuf.data(),
                      dst_cmdbuf.size() * sizeof(u32));

    return RESULT_SUCCESS;
}

std::vector<u8> HLERequestContext::ReadBuffer(std::size_t buffer_index) const {
    std::vector<u8> buffer{};
    const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
                           BufferDescriptorA()[buffer_index].Size()};

    if (is_buffer_a) {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorA().size() > buffer_index, { return buffer; },
            "BufferDescriptorA invalid buffer_index {}", buffer_index);
        buffer.resize(BufferDescriptorA()[buffer_index].Size());
        memory.ReadBlock(BufferDescriptorA()[buffer_index].Address(), buffer.data(), buffer.size());
    } else {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorX().size() > buffer_index, { return buffer; },
            "BufferDescriptorX invalid buffer_index {}", buffer_index);
        buffer.resize(BufferDescriptorX()[buffer_index].Size());
        memory.ReadBlock(BufferDescriptorX()[buffer_index].Address(), buffer.data(), buffer.size());
    }

    return buffer;
}

std::size_t HLERequestContext::WriteBuffer(const void* buffer, std::size_t size,
                                           std::size_t buffer_index) const {
    if (size == 0) {
        LOG_WARNING(Core, "skip empty buffer write");
        return 0;
    }

    const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
                           BufferDescriptorB()[buffer_index].Size()};
    const std::size_t buffer_size{GetWriteBufferSize(buffer_index)};
    if (size > buffer_size) {
        LOG_CRITICAL(Core, "size ({:016X}) is greater than buffer_size ({:016X})", size,
                     buffer_size);
        size = buffer_size; // TODO(bunnei): This needs to be HW tested
    }

    if (is_buffer_b) {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorB().size() > buffer_index &&
                BufferDescriptorB()[buffer_index].Size() >= size,
            { return 0; }, "BufferDescriptorB is invalid, index={}, size={}", buffer_index, size);
        memory.WriteBlock(BufferDescriptorB()[buffer_index].Address(), buffer, size);
    } else {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorC().size() > buffer_index &&
                BufferDescriptorC()[buffer_index].Size() >= size,
            { return 0; }, "BufferDescriptorC is invalid, index={}, size={}", buffer_index, size);
        memory.WriteBlock(BufferDescriptorC()[buffer_index].Address(), buffer, size);
    }

    return size;
}

std::size_t HLERequestContext::GetReadBufferSize(std::size_t buffer_index) const {
    const bool is_buffer_a{BufferDescriptorA().size() > buffer_index &&
                           BufferDescriptorA()[buffer_index].Size()};
    if (is_buffer_a) {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorA().size() > buffer_index, { return 0; },
            "BufferDescriptorA invalid buffer_index {}", buffer_index);
        return BufferDescriptorA()[buffer_index].Size();
    } else {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorX().size() > buffer_index, { return 0; },
            "BufferDescriptorX invalid buffer_index {}", buffer_index);
        return BufferDescriptorX()[buffer_index].Size();
    }
}

std::size_t HLERequestContext::GetWriteBufferSize(std::size_t buffer_index) const {
    const bool is_buffer_b{BufferDescriptorB().size() > buffer_index &&
                           BufferDescriptorB()[buffer_index].Size()};
    if (is_buffer_b) {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorB().size() > buffer_index, { return 0; },
            "BufferDescriptorB invalid buffer_index {}", buffer_index);
        return BufferDescriptorB()[buffer_index].Size();
    } else {
        ASSERT_OR_EXECUTE_MSG(
            BufferDescriptorC().size() > buffer_index, { return 0; },
            "BufferDescriptorC invalid buffer_index {}", buffer_index);
        return BufferDescriptorC()[buffer_index].Size();
    }
    return 0;
}

std::string HLERequestContext::Description() const {
    if (!command_header) {
        return "No command header available";
    }
    std::ostringstream s;
    s << "IPC::CommandHeader: Type:" << static_cast<u32>(command_header->type.Value());
    s << ", X(Pointer):" << command_header->num_buf_x_descriptors;
    if (command_header->num_buf_x_descriptors) {
        s << '[';
        for (u64 i = 0; i < command_header->num_buf_x_descriptors; ++i) {
            s << "0x" << std::hex << BufferDescriptorX()[i].Size();
            if (i < command_header->num_buf_x_descriptors - 1)
                s << ", ";
        }
        s << ']';
    }
    s << ", A(Send):" << command_header->num_buf_a_descriptors;
    if (command_header->num_buf_a_descriptors) {
        s << '[';
        for (u64 i = 0; i < command_header->num_buf_a_descriptors; ++i) {
            s << "0x" << std::hex << BufferDescriptorA()[i].Size();
            if (i < command_header->num_buf_a_descriptors - 1)
                s << ", ";
        }
        s << ']';
    }
    s << ", B(Receive):" << command_header->num_buf_b_descriptors;
    if (command_header->num_buf_b_descriptors) {
        s << '[';
        for (u64 i = 0; i < command_header->num_buf_b_descriptors; ++i) {
            s << "0x" << std::hex << BufferDescriptorB()[i].Size();
            if (i < command_header->num_buf_b_descriptors - 1)
                s << ", ";
        }
        s << ']';
    }
    s << ", C(ReceiveList):" << BufferDescriptorC().size();
    if (!BufferDescriptorC().empty()) {
        s << '[';
        for (u64 i = 0; i < BufferDescriptorC().size(); ++i) {
            s << "0x" << std::hex << BufferDescriptorC()[i].Size();
            if (i < BufferDescriptorC().size() - 1)
                s << ", ";
        }
        s << ']';
    }
    s << ", data_size:" << command_header->data_size.Value();

    return s.str();
}

} // namespace Kernel