1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
|
// SPDX-FileCopyrightText: Copyright 2023 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <random>
#include "common/scope_exit.h"
#include "common/settings.h"
#include "core/core.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_scoped_resource_reservation.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/k_shared_memory_info.h"
#include "core/hle/kernel/k_thread_local_page.h"
#include "core/hle/kernel/k_thread_queue.h"
#include "core/hle/kernel/k_worker_task_manager.h"
#include "core/arm/dynarmic/arm_dynarmic_32.h"
#include "core/arm/dynarmic/arm_dynarmic_64.h"
#ifdef HAS_NCE
#include "core/arm/nce/arm_nce.h"
#endif
namespace Kernel {
namespace {
Result TerminateChildren(KernelCore& kernel, KProcess* process,
const KThread* thread_to_not_terminate) {
// Request that all children threads terminate.
{
KScopedLightLock proc_lk(process->GetListLock());
KScopedSchedulerLock sl(kernel);
if (thread_to_not_terminate != nullptr &&
process->GetPinnedThread(GetCurrentCoreId(kernel)) == thread_to_not_terminate) {
// NOTE: Here Nintendo unpins the current thread instead of the thread_to_not_terminate.
// This is valid because the only caller which uses non-nullptr as argument uses
// GetCurrentThreadPointer(), but it's still notable because it seems incorrect at
// first glance.
process->UnpinCurrentThread();
}
auto& thread_list = process->GetThreadList();
for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
if (thread->GetState() != ThreadState::Terminated) {
thread->RequestTerminate();
}
}
}
}
// Wait for all children threads to terminate.
while (true) {
// Get the next child.
KThread* cur_child = nullptr;
{
KScopedLightLock proc_lk(process->GetListLock());
auto& thread_list = process->GetThreadList();
for (auto it = thread_list.begin(); it != thread_list.end(); ++it) {
if (KThread* thread = std::addressof(*it); thread != thread_to_not_terminate) {
if (thread->GetState() != ThreadState::Terminated) {
if (thread->Open()) {
cur_child = thread;
break;
}
}
}
}
}
// If we didn't find any non-terminated children, we're done.
if (cur_child == nullptr) {
break;
}
// Terminate and close the thread.
SCOPE_EXIT({ cur_child->Close(); });
if (const Result terminate_result = cur_child->Terminate();
ResultTerminationRequested == terminate_result) {
R_THROW(terminate_result);
}
}
R_SUCCEED();
}
class ThreadQueueImplForKProcessEnterUserException final : public KThreadQueue {
private:
KThread** m_exception_thread;
public:
explicit ThreadQueueImplForKProcessEnterUserException(KernelCore& kernel, KThread** t)
: KThreadQueue(kernel), m_exception_thread(t) {}
virtual void EndWait(KThread* waiting_thread, Result wait_result) override {
// Set the exception thread.
*m_exception_thread = waiting_thread;
// Invoke the base end wait handler.
KThreadQueue::EndWait(waiting_thread, wait_result);
}
virtual void CancelWait(KThread* waiting_thread, Result wait_result,
bool cancel_timer_task) override {
// Remove the thread as a waiter on its mutex owner.
waiting_thread->GetLockOwner()->RemoveWaiter(waiting_thread);
// Invoke the base cancel wait handler.
KThreadQueue::CancelWait(waiting_thread, wait_result, cancel_timer_task);
}
};
void GenerateRandom(std::span<u64> out_random) {
std::mt19937 rng(Settings::values.rng_seed_enabled ? Settings::values.rng_seed.GetValue()
: static_cast<u32>(std::time(nullptr)));
std::uniform_int_distribution<u64> distribution;
std::generate(out_random.begin(), out_random.end(), [&] { return distribution(rng); });
}
} // namespace
void KProcess::Finalize() {
// Delete the process local region.
this->DeleteThreadLocalRegion(m_plr_address);
// Get the used memory size.
const size_t used_memory_size = this->GetUsedNonSystemUserPhysicalMemorySize();
// Finalize the page table.
m_page_table.Finalize();
// Finish using our system resource.
if (m_system_resource) {
if (m_system_resource->IsSecureResource()) {
// Finalize optimized memory. If memory wasn't optimized, this is a no-op.
m_kernel.MemoryManager().FinalizeOptimizedMemory(this->GetId(), m_memory_pool);
}
m_system_resource->Close();
m_system_resource = nullptr;
}
// Free all shared memory infos.
{
auto it = m_shared_memory_list.begin();
while (it != m_shared_memory_list.end()) {
KSharedMemoryInfo* info = std::addressof(*it);
KSharedMemory* shmem = info->GetSharedMemory();
while (!info->Close()) {
shmem->Close();
}
shmem->Close();
it = m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(m_kernel, info);
}
}
// Our thread local page list must be empty at this point.
ASSERT(m_partially_used_tlp_tree.empty());
ASSERT(m_fully_used_tlp_tree.empty());
// Release memory to the resource limit.
if (m_resource_limit != nullptr) {
ASSERT(used_memory_size >= m_memory_release_hint);
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, used_memory_size,
used_memory_size - m_memory_release_hint);
m_resource_limit->Close();
}
// Perform inherited finalization.
KSynchronizationObject::Finalize();
}
Result KProcess::Initialize(const Svc::CreateProcessParameter& params, KResourceLimit* res_limit,
bool is_real) {
// TODO: remove this special case
if (is_real) {
// Create and clear the process local region.
R_TRY(this->CreateThreadLocalRegion(std::addressof(m_plr_address)));
this->GetMemory().ZeroBlock(m_plr_address, Svc::ThreadLocalRegionSize);
}
// Copy in the name from parameters.
static_assert(sizeof(params.name) < sizeof(m_name));
std::memcpy(m_name.data(), params.name.data(), sizeof(params.name));
m_name[sizeof(params.name)] = 0;
// Set misc fields.
m_state = State::Created;
m_main_thread_stack_size = 0;
m_used_kernel_memory_size = 0;
m_ideal_core_id = 0;
m_flags = params.flags;
m_version = params.version;
m_program_id = params.program_id;
m_code_address = params.code_address;
m_code_size = params.code_num_pages * PageSize;
m_is_application = True(params.flags & Svc::CreateProcessFlag::IsApplication);
// Set thread fields.
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_running_threads[i] = nullptr;
m_pinned_threads[i] = nullptr;
m_running_thread_idle_counts[i] = 0;
m_running_thread_switch_counts[i] = 0;
}
// Set max memory based on address space type.
switch ((params.flags & Svc::CreateProcessFlag::AddressSpaceMask)) {
case Svc::CreateProcessFlag::AddressSpace32Bit:
case Svc::CreateProcessFlag::AddressSpace64BitDeprecated:
case Svc::CreateProcessFlag::AddressSpace64Bit:
m_max_process_memory = m_page_table.GetHeapRegionSize();
break;
case Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias:
m_max_process_memory = m_page_table.GetHeapRegionSize() + m_page_table.GetAliasRegionSize();
break;
default:
UNREACHABLE();
}
// Generate random entropy.
GenerateRandom(m_entropy);
// Clear remaining fields.
m_num_running_threads = 0;
m_num_process_switches = 0;
m_num_thread_switches = 0;
m_num_fpu_switches = 0;
m_num_supervisor_calls = 0;
m_num_ipc_messages = 0;
m_is_signaled = false;
m_exception_thread = nullptr;
m_is_suspended = false;
m_memory_release_hint = 0;
m_schedule_count = 0;
m_is_handle_table_initialized = false;
// Open a reference to our resource limit.
m_resource_limit = res_limit;
m_resource_limit->Open();
// We're initialized!
m_is_initialized = true;
R_SUCCEED();
}
Result KProcess::Initialize(const Svc::CreateProcessParameter& params, const KPageGroup& pg,
std::span<const u32> caps, KResourceLimit* res_limit,
KMemoryManager::Pool pool, bool immortal) {
ASSERT(res_limit != nullptr);
ASSERT((params.code_num_pages * PageSize) / PageSize ==
static_cast<size_t>(params.code_num_pages));
// Set members.
m_memory_pool = pool;
m_is_default_application_system_resource = false;
m_is_immortal = immortal;
// Setup our system resource.
if (const size_t system_resource_num_pages = params.system_resource_num_pages;
system_resource_num_pages != 0) {
// Create a secure system resource.
KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
ON_RESULT_FAILURE {
secure_resource->Close();
};
// Initialize the secure resource.
R_TRY(secure_resource->Initialize(system_resource_num_pages * PageSize, res_limit,
m_memory_pool));
// Set our system resource.
m_system_resource = secure_resource;
} else {
// Use the system-wide system resource.
const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
: m_kernel.GetSystemSystemResource());
m_is_default_application_system_resource = is_app;
// Open reference to the system resource.
m_system_resource->Open();
}
// Ensure we clean up our secure resource, if we fail.
ON_RESULT_FAILURE {
m_system_resource->Close();
m_system_resource = nullptr;
};
// Setup page table.
{
const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
const bool enable_das_merge =
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, params.code_num_pages * PageSize,
m_system_resource, res_limit, this->GetMemory(), 0));
}
ON_RESULT_FAILURE_2 {
m_page_table.Finalize();
};
// Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, params.code_num_pages * PageSize,
KMemoryState::Code),
ResultInvalidMemoryRegion);
// Map the code region.
R_TRY(m_page_table.MapPageGroup(params.code_address, pg, KMemoryState::Code,
KMemoryPermission::KernelRead));
// Initialize capabilities.
R_TRY(m_capabilities.InitializeForKip(caps, std::addressof(m_page_table)));
// Initialize the process id.
m_process_id = m_kernel.CreateNewUserProcessID();
ASSERT(InitialProcessIdMin <= m_process_id);
ASSERT(m_process_id <= InitialProcessIdMax);
// Initialize the rest of the process.
R_TRY(this->Initialize(params, res_limit, true));
// We succeeded!
R_SUCCEED();
}
Result KProcess::Initialize(const Svc::CreateProcessParameter& params,
std::span<const u32> user_caps, KResourceLimit* res_limit,
KMemoryManager::Pool pool, KProcessAddress aslr_space_start) {
ASSERT(res_limit != nullptr);
// Set members.
m_memory_pool = pool;
m_is_default_application_system_resource = false;
m_is_immortal = false;
// Get the memory sizes.
const size_t code_num_pages = params.code_num_pages;
const size_t system_resource_num_pages = params.system_resource_num_pages;
const size_t code_size = code_num_pages * PageSize;
const size_t system_resource_size = system_resource_num_pages * PageSize;
// Reserve memory for our code resource.
KScopedResourceReservation memory_reservation(
res_limit, Svc::LimitableResource::PhysicalMemoryMax, code_size);
R_UNLESS(memory_reservation.Succeeded(), ResultLimitReached);
// Setup our system resource.
if (system_resource_num_pages != 0) {
// Create a secure system resource.
KSecureSystemResource* secure_resource = KSecureSystemResource::Create(m_kernel);
R_UNLESS(secure_resource != nullptr, ResultOutOfResource);
ON_RESULT_FAILURE {
secure_resource->Close();
};
// Initialize the secure resource.
R_TRY(secure_resource->Initialize(system_resource_size, res_limit, m_memory_pool));
// Set our system resource.
m_system_resource = secure_resource;
} else {
// Use the system-wide system resource.
const bool is_app = True(params.flags & Svc::CreateProcessFlag::IsApplication);
m_system_resource = std::addressof(is_app ? m_kernel.GetAppSystemResource()
: m_kernel.GetSystemSystemResource());
m_is_default_application_system_resource = is_app;
// Open reference to the system resource.
m_system_resource->Open();
}
// Ensure we clean up our secure resource, if we fail.
ON_RESULT_FAILURE {
m_system_resource->Close();
m_system_resource = nullptr;
};
// Setup page table.
{
const auto as_type = params.flags & Svc::CreateProcessFlag::AddressSpaceMask;
const bool enable_aslr = True(params.flags & Svc::CreateProcessFlag::EnableAslr);
const bool enable_das_merge =
False(params.flags & Svc::CreateProcessFlag::DisableDeviceAddressSpaceMerge);
R_TRY(m_page_table.Initialize(as_type, enable_aslr, enable_das_merge, !enable_aslr, pool,
params.code_address, code_size, m_system_resource, res_limit,
this->GetMemory(), aslr_space_start));
}
ON_RESULT_FAILURE_2 {
m_page_table.Finalize();
};
// Ensure we can insert the code region.
R_UNLESS(m_page_table.CanContain(params.code_address, code_size, KMemoryState::Code),
ResultInvalidMemoryRegion);
// Map the code region.
R_TRY(m_page_table.MapPages(params.code_address, code_num_pages, KMemoryState::Code,
KMemoryPermission::KernelRead | KMemoryPermission::NotMapped));
// Initialize capabilities.
R_TRY(m_capabilities.InitializeForUser(user_caps, std::addressof(m_page_table)));
// Initialize the process id.
m_process_id = m_kernel.CreateNewUserProcessID();
ASSERT(ProcessIdMin <= m_process_id);
ASSERT(m_process_id <= ProcessIdMax);
// If we should optimize memory allocations, do so.
if (m_system_resource->IsSecureResource() &&
True(params.flags & Svc::CreateProcessFlag::OptimizeMemoryAllocation)) {
R_TRY(m_kernel.MemoryManager().InitializeOptimizedMemory(m_process_id, pool));
}
// Initialize the rest of the process.
R_TRY(this->Initialize(params, res_limit, true));
// We succeeded, so commit our memory reservation.
memory_reservation.Commit();
R_SUCCEED();
}
void KProcess::DoWorkerTaskImpl() {
// Terminate child threads.
TerminateChildren(m_kernel, this, nullptr);
// Finalize the handle table, if we're not immortal.
if (!m_is_immortal && m_is_handle_table_initialized) {
this->FinalizeHandleTable();
}
// Finish termination.
this->FinishTermination();
}
Result KProcess::StartTermination() {
// Finalize the handle table when we're done, if the process isn't immortal.
SCOPE_EXIT({
if (!m_is_immortal) {
this->FinalizeHandleTable();
}
});
// Terminate child threads other than the current one.
R_RETURN(TerminateChildren(m_kernel, this, GetCurrentThreadPointer(m_kernel)));
}
void KProcess::FinishTermination() {
// Only allow termination to occur if the process isn't immortal.
if (!m_is_immortal) {
// Release resource limit hint.
if (m_resource_limit != nullptr) {
m_memory_release_hint = this->GetUsedNonSystemUserPhysicalMemorySize();
m_resource_limit->Release(Svc::LimitableResource::PhysicalMemoryMax, 0,
m_memory_release_hint);
}
// Change state.
{
KScopedSchedulerLock sl(m_kernel);
this->ChangeState(State::Terminated);
}
// Close.
this->Close();
}
}
void KProcess::Exit() {
// Determine whether we need to start terminating
bool needs_terminate = false;
{
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl(m_kernel);
ASSERT(m_state != State::Created);
ASSERT(m_state != State::CreatedAttached);
ASSERT(m_state != State::Crashed);
ASSERT(m_state != State::Terminated);
if (m_state == State::Running || m_state == State::RunningAttached ||
m_state == State::DebugBreak) {
this->ChangeState(State::Terminating);
needs_terminate = true;
}
}
// If we need to start termination, do so.
if (needs_terminate) {
this->StartTermination();
// Register the process as a work task.
m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit, this);
}
// Exit the current thread.
GetCurrentThread(m_kernel).Exit();
}
Result KProcess::Terminate() {
// Determine whether we need to start terminating.
bool needs_terminate = false;
{
KScopedLightLock lk(m_state_lock);
// Check whether we're allowed to terminate.
R_UNLESS(m_state != State::Created, ResultInvalidState);
R_UNLESS(m_state != State::CreatedAttached, ResultInvalidState);
KScopedSchedulerLock sl(m_kernel);
if (m_state == State::Running || m_state == State::RunningAttached ||
m_state == State::Crashed || m_state == State::DebugBreak) {
this->ChangeState(State::Terminating);
needs_terminate = true;
}
}
// If we need to terminate, do so.
if (needs_terminate) {
// Start termination.
if (R_SUCCEEDED(this->StartTermination())) {
// Finish termination.
this->FinishTermination();
} else {
// Register the process as a work task.
m_kernel.WorkerTaskManager().AddTask(m_kernel, KWorkerTaskManager::WorkerType::Exit,
this);
}
}
R_SUCCEED();
}
Result KProcess::AddSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
// Try to find an existing info for the memory.
KSharedMemoryInfo* info = nullptr;
for (auto it = m_shared_memory_list.begin(); it != m_shared_memory_list.end(); ++it) {
if (it->GetSharedMemory() == shmem) {
info = std::addressof(*it);
break;
}
}
// If we didn't find an info, create one.
if (info == nullptr) {
// Allocate a new info.
info = KSharedMemoryInfo::Allocate(m_kernel);
R_UNLESS(info != nullptr, ResultOutOfResource);
// Initialize the info and add it to our list.
info->Initialize(shmem);
m_shared_memory_list.push_back(*info);
}
// Open a reference to the shared memory and its info.
shmem->Open();
info->Open();
R_SUCCEED();
}
void KProcess::RemoveSharedMemory(KSharedMemory* shmem, KProcessAddress address, size_t size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
// Find an existing info for the memory.
KSharedMemoryInfo* info = nullptr;
auto it = m_shared_memory_list.begin();
for (; it != m_shared_memory_list.end(); ++it) {
if (it->GetSharedMemory() == shmem) {
info = std::addressof(*it);
break;
}
}
ASSERT(info != nullptr);
// Close a reference to the info and its memory.
if (info->Close()) {
m_shared_memory_list.erase(it);
KSharedMemoryInfo::Free(m_kernel, info);
}
shmem->Close();
}
Result KProcess::CreateThreadLocalRegion(KProcessAddress* out) {
KThreadLocalPage* tlp = nullptr;
KProcessAddress tlr = 0;
// See if we can get a region from a partially used TLP.
{
KScopedSchedulerLock sl(m_kernel);
if (auto it = m_partially_used_tlp_tree.begin(); it != m_partially_used_tlp_tree.end()) {
tlr = it->Reserve();
ASSERT(tlr != 0);
if (it->IsAllUsed()) {
tlp = std::addressof(*it);
m_partially_used_tlp_tree.erase(it);
m_fully_used_tlp_tree.insert(*tlp);
}
*out = tlr;
R_SUCCEED();
}
}
// Allocate a new page.
tlp = KThreadLocalPage::Allocate(m_kernel);
R_UNLESS(tlp != nullptr, ResultOutOfMemory);
ON_RESULT_FAILURE {
KThreadLocalPage::Free(m_kernel, tlp);
};
// Initialize the new page.
R_TRY(tlp->Initialize(m_kernel, this));
// Reserve a TLR.
tlr = tlp->Reserve();
ASSERT(tlr != 0);
// Insert into our tree.
{
KScopedSchedulerLock sl(m_kernel);
if (tlp->IsAllUsed()) {
m_fully_used_tlp_tree.insert(*tlp);
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
}
// We succeeded!
*out = tlr;
R_SUCCEED();
}
Result KProcess::DeleteThreadLocalRegion(KProcessAddress addr) {
KThreadLocalPage* page_to_free = nullptr;
// Release the region.
{
KScopedSchedulerLock sl(m_kernel);
// Try to find the page in the partially used list.
auto it = m_partially_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
if (it == m_partially_used_tlp_tree.end()) {
// If we don't find it, it has to be in the fully used list.
it = m_fully_used_tlp_tree.find_key(Common::AlignDown(GetInteger(addr), PageSize));
R_UNLESS(it != m_fully_used_tlp_tree.end(), ResultInvalidAddress);
// Release the region.
it->Release(addr);
// Move the page out of the fully used list.
KThreadLocalPage* tlp = std::addressof(*it);
m_fully_used_tlp_tree.erase(it);
if (tlp->IsAllFree()) {
page_to_free = tlp;
} else {
m_partially_used_tlp_tree.insert(*tlp);
}
} else {
// Release the region.
it->Release(addr);
// Handle the all-free case.
KThreadLocalPage* tlp = std::addressof(*it);
if (tlp->IsAllFree()) {
m_partially_used_tlp_tree.erase(it);
page_to_free = tlp;
}
}
}
// If we should free the page it was in, do so.
if (page_to_free != nullptr) {
page_to_free->Finalize();
KThreadLocalPage::Free(m_kernel, page_to_free);
}
R_SUCCEED();
}
bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
return rl->Reserve(which, value);
} else {
return true;
}
}
bool KProcess::ReserveResource(Svc::LimitableResource which, s64 value, s64 timeout) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
return rl->Reserve(which, value, timeout);
} else {
return true;
}
}
void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
rl->Release(which, value);
}
}
void KProcess::ReleaseResource(Svc::LimitableResource which, s64 value, s64 hint) {
if (KResourceLimit* rl = this->GetResourceLimit(); rl != nullptr) {
rl->Release(which, value, hint);
}
}
void KProcess::IncrementRunningThreadCount() {
ASSERT(m_num_running_threads.load() >= 0);
++m_num_running_threads;
}
void KProcess::DecrementRunningThreadCount() {
ASSERT(m_num_running_threads.load() > 0);
if (const auto prev = m_num_running_threads--; prev == 1) {
this->Terminate();
}
}
bool KProcess::EnterUserException() {
// Get the current thread.
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
ASSERT(this == cur_thread->GetOwnerProcess());
// Check that we haven't already claimed the exception thread.
if (m_exception_thread == cur_thread) {
return false;
}
// Create the wait queue we'll be using.
ThreadQueueImplForKProcessEnterUserException wait_queue(m_kernel,
std::addressof(m_exception_thread));
// Claim the exception thread.
{
// Lock the scheduler.
KScopedSchedulerLock sl(m_kernel);
// Check that we're not terminating.
if (cur_thread->IsTerminationRequested()) {
return false;
}
// If we don't have an exception thread, we can just claim it directly.
if (m_exception_thread == nullptr) {
m_exception_thread = cur_thread;
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
}
// Otherwise, we need to wait until we don't have an exception thread.
// Add the current thread as a waiter on the current exception thread.
cur_thread->SetKernelAddressKey(
reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
m_exception_thread->AddWaiter(cur_thread);
// Wait to claim the exception thread.
cur_thread->BeginWait(std::addressof(wait_queue));
}
// If our wait didn't end due to thread termination, we succeeded.
return ResultTerminationRequested != cur_thread->GetWaitResult();
}
bool KProcess::LeaveUserException() {
return this->ReleaseUserException(GetCurrentThreadPointer(m_kernel));
}
bool KProcess::ReleaseUserException(KThread* thread) {
KScopedSchedulerLock sl(m_kernel);
if (m_exception_thread == thread) {
m_exception_thread = nullptr;
// Remove waiter thread.
bool has_waiters;
if (KThread* next = thread->RemoveKernelWaiterByKey(
std::addressof(has_waiters),
reinterpret_cast<uintptr_t>(std::addressof(m_exception_thread)) | 1);
next != nullptr) {
next->EndWait(ResultSuccess);
}
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
return true;
} else {
return false;
}
}
void KProcess::RegisterThread(KThread* thread) {
KScopedLightLock lk(m_list_lock);
m_thread_list.push_back(*thread);
}
void KProcess::UnregisterThread(KThread* thread) {
KScopedLightLock lk(m_list_lock);
m_thread_list.erase(m_thread_list.iterator_to(*thread));
}
size_t KProcess::GetUsedUserPhysicalMemorySize() const {
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
const size_t sec_size = this->GetRequiredSecureMemorySizeNonDefault();
return norm_size + other_size + sec_size;
}
size_t KProcess::GetTotalUserPhysicalMemorySize() const {
// Get the amount of free and used size.
const size_t free_size =
m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
const size_t max_size = m_max_process_memory;
// Determine used size.
// NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
// GetUsedUserPhysicalMemorySize().
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
const size_t sec_size = this->GetRequiredSecureMemorySize();
const size_t used_size = norm_size + other_size + sec_size;
// NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
// does it this way.
if (used_size + free_size > max_size) {
return max_size;
} else {
return free_size + this->GetUsedUserPhysicalMemorySize();
}
}
size_t KProcess::GetUsedNonSystemUserPhysicalMemorySize() const {
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
return norm_size + other_size;
}
size_t KProcess::GetTotalNonSystemUserPhysicalMemorySize() const {
// Get the amount of free and used size.
const size_t free_size =
m_resource_limit->GetFreeValue(Svc::LimitableResource::PhysicalMemoryMax);
const size_t max_size = m_max_process_memory;
// Determine used size.
// NOTE: This does *not* check this->IsDefaultApplicationSystemResource(), unlike
// GetUsedUserPhysicalMemorySize().
const size_t norm_size = m_page_table.GetNormalMemorySize();
const size_t other_size = m_code_size + m_main_thread_stack_size;
const size_t sec_size = this->GetRequiredSecureMemorySize();
const size_t used_size = norm_size + other_size + sec_size;
// NOTE: These function calls will recalculate, introducing a race...it is unclear why Nintendo
// does it this way.
if (used_size + free_size > max_size) {
return max_size - this->GetRequiredSecureMemorySizeNonDefault();
} else {
return free_size + this->GetUsedNonSystemUserPhysicalMemorySize();
}
}
Result KProcess::Run(s32 priority, size_t stack_size) {
// Lock ourselves, to prevent concurrent access.
KScopedLightLock lk(m_state_lock);
// Validate that we're in a state where we can initialize.
const auto state = m_state;
R_UNLESS(state == State::Created || state == State::CreatedAttached, ResultInvalidState);
// Place a tentative reservation of a thread for this process.
KScopedResourceReservation thread_reservation(this, Svc::LimitableResource::ThreadCountMax);
R_UNLESS(thread_reservation.Succeeded(), ResultLimitReached);
// Ensure that we haven't already allocated stack.
ASSERT(m_main_thread_stack_size == 0);
// Ensure that we're allocating a valid stack.
stack_size = Common::AlignUp(stack_size, PageSize);
R_UNLESS(stack_size + m_code_size <= m_max_process_memory, ResultOutOfMemory);
R_UNLESS(stack_size + m_code_size >= m_code_size, ResultOutOfMemory);
// Place a tentative reservation of memory for our new stack.
KScopedResourceReservation mem_reservation(this, Svc::LimitableResource::PhysicalMemoryMax,
stack_size);
R_UNLESS(mem_reservation.Succeeded(), ResultLimitReached);
// Allocate and map our stack.
KProcessAddress stack_top = 0;
if (stack_size) {
KProcessAddress stack_bottom;
R_TRY(m_page_table.MapPages(std::addressof(stack_bottom), stack_size / PageSize,
KMemoryState::Stack, KMemoryPermission::UserReadWrite));
stack_top = stack_bottom + stack_size;
m_main_thread_stack_size = stack_size;
}
// Ensure our stack is safe to clean up on exit.
ON_RESULT_FAILURE {
if (m_main_thread_stack_size) {
ASSERT(R_SUCCEEDED(m_page_table.UnmapPages(stack_top - m_main_thread_stack_size,
m_main_thread_stack_size / PageSize,
KMemoryState::Stack)));
m_main_thread_stack_size = 0;
}
};
// Set our maximum heap size.
R_TRY(m_page_table.SetMaxHeapSize(m_max_process_memory -
(m_main_thread_stack_size + m_code_size)));
// Initialize our handle table.
R_TRY(this->InitializeHandleTable(m_capabilities.GetHandleTableSize()));
ON_RESULT_FAILURE_2 {
this->FinalizeHandleTable();
};
// Create a new thread for the process.
KThread* main_thread = KThread::Create(m_kernel);
R_UNLESS(main_thread != nullptr, ResultOutOfResource);
SCOPE_EXIT({ main_thread->Close(); });
// Initialize the thread.
R_TRY(KThread::InitializeUserThread(m_kernel.System(), main_thread, this->GetEntryPoint(), 0,
stack_top, priority, m_ideal_core_id, this));
// Register the thread, and commit our reservation.
KThread::Register(m_kernel, main_thread);
thread_reservation.Commit();
// Add the thread to our handle table.
Handle thread_handle;
R_TRY(m_handle_table.Add(std::addressof(thread_handle), main_thread));
// Set the thread arguments.
main_thread->GetContext().r[0] = 0;
main_thread->GetContext().r[1] = thread_handle;
// Update our state.
this->ChangeState((state == State::Created) ? State::Running : State::RunningAttached);
ON_RESULT_FAILURE_2 {
this->ChangeState(state);
};
// Suspend for debug, if we should.
if (m_kernel.System().DebuggerEnabled()) {
main_thread->RequestSuspend(SuspendType::Debug);
}
// Run our thread.
R_TRY(main_thread->Run());
// Open a reference to represent that we're running.
this->Open();
// We succeeded! Commit our memory reservation.
mem_reservation.Commit();
R_SUCCEED();
}
Result KProcess::Reset() {
// Lock the process and the scheduler.
KScopedLightLock lk(m_state_lock);
KScopedSchedulerLock sl(m_kernel);
// Validate that we're in a state that we can reset.
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
R_UNLESS(m_is_signaled, ResultInvalidState);
// Clear signaled.
m_is_signaled = false;
R_SUCCEED();
}
Result KProcess::SetActivity(Svc::ProcessActivity activity) {
// Lock ourselves and the scheduler.
KScopedLightLock lk(m_state_lock);
KScopedLightLock list_lk(m_list_lock);
KScopedSchedulerLock sl(m_kernel);
// Validate our state.
R_UNLESS(m_state != State::Terminating, ResultInvalidState);
R_UNLESS(m_state != State::Terminated, ResultInvalidState);
// Either pause or resume.
if (activity == Svc::ProcessActivity::Paused) {
// Verify that we're not suspended.
R_UNLESS(!m_is_suspended, ResultInvalidState);
// Suspend all threads.
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
it->RequestSuspend(SuspendType::Process);
}
// Set ourselves as suspended.
this->SetSuspended(true);
} else {
ASSERT(activity == Svc::ProcessActivity::Runnable);
// Verify that we're suspended.
R_UNLESS(m_is_suspended, ResultInvalidState);
// Resume all threads.
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
it->Resume(SuspendType::Process);
}
// Set ourselves as resumed.
this->SetSuspended(false);
}
R_SUCCEED();
}
void KProcess::PinCurrentThread() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
const s32 core_id = GetCurrentCoreId(m_kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
// If the thread isn't terminated, pin it.
if (!cur_thread->IsTerminationRequested()) {
// Pin it.
this->PinThread(core_id, cur_thread);
cur_thread->Pin(core_id);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
}
void KProcess::UnpinCurrentThread() {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the current thread.
const s32 core_id = GetCurrentCoreId(m_kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
// Unpin it.
cur_thread->Unpin();
this->UnpinThread(core_id, cur_thread);
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
void KProcess::UnpinThread(KThread* thread) {
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
// Get the thread's core id.
const auto core_id = thread->GetActiveCore();
// Unpin it.
this->UnpinThread(core_id, thread);
thread->Unpin();
// An update is needed.
KScheduler::SetSchedulerUpdateNeeded(m_kernel);
}
Result KProcess::GetThreadList(s32* out_num_threads, KProcessAddress out_thread_ids,
s32 max_out_count) {
// TODO: use current memory reference
auto& memory = m_kernel.System().ApplicationMemory();
// Lock the list.
KScopedLightLock lk(m_list_lock);
// Iterate over the list.
s32 count = 0;
auto end = this->GetThreadList().end();
for (auto it = this->GetThreadList().begin(); it != end; ++it) {
// If we're within array bounds, write the id.
if (count < max_out_count) {
// Get the thread id.
KThread* thread = std::addressof(*it);
const u64 id = thread->GetId();
// Copy the id to userland.
memory.Write64(out_thread_ids + count * sizeof(u64), id);
}
// Increment the count.
++count;
}
// We successfully iterated the list.
*out_num_threads = count;
R_SUCCEED();
}
void KProcess::Switch(KProcess* cur_process, KProcess* next_process) {}
KProcess::KProcess(KernelCore& kernel)
: KAutoObjectWithSlabHeapAndContainer(kernel), m_page_table{kernel}, m_state_lock{kernel},
m_list_lock{kernel}, m_cond_var{kernel.System()}, m_address_arbiter{kernel.System()},
m_handle_table{kernel} {}
KProcess::~KProcess() = default;
Result KProcess::LoadFromMetadata(const FileSys::ProgramMetadata& metadata, std::size_t code_size,
KProcessAddress aslr_space_start, bool is_hbl) {
// Create a resource limit for the process.
const auto physical_memory_size =
m_kernel.MemoryManager().GetSize(Kernel::KMemoryManager::Pool::Application);
auto* res_limit =
Kernel::CreateResourceLimitForProcess(m_kernel.System(), physical_memory_size);
// Ensure we maintain a clean state on exit.
SCOPE_EXIT({ res_limit->Close(); });
// Declare flags and code address.
Svc::CreateProcessFlag flag{};
u64 code_address{};
// We are an application.
flag |= Svc::CreateProcessFlag::IsApplication;
// If we are 64-bit, create as such.
if (metadata.Is64BitProgram()) {
flag |= Svc::CreateProcessFlag::Is64Bit;
}
// Set the address space type and code address.
switch (metadata.GetAddressSpaceType()) {
case FileSys::ProgramAddressSpaceType::Is39Bit:
flag |= Svc::CreateProcessFlag::AddressSpace64Bit;
// For 39-bit processes, the ASLR region starts at 0x800'0000 and is ~512GiB large.
// However, some (buggy) programs/libraries like skyline incorrectly depend on the
// existence of ASLR pages before the entry point, so we will adjust the load address
// to point to about 2GiB into the ASLR region.
code_address = 0x8000'0000;
break;
case FileSys::ProgramAddressSpaceType::Is36Bit:
flag |= Svc::CreateProcessFlag::AddressSpace64BitDeprecated;
code_address = 0x800'0000;
break;
case FileSys::ProgramAddressSpaceType::Is32Bit:
flag |= Svc::CreateProcessFlag::AddressSpace32Bit;
code_address = 0x20'0000;
break;
case FileSys::ProgramAddressSpaceType::Is32BitNoMap:
flag |= Svc::CreateProcessFlag::AddressSpace32BitWithoutAlias;
code_address = 0x20'0000;
break;
}
Svc::CreateProcessParameter params{
.name = {},
.version = {},
.program_id = metadata.GetTitleID(),
.code_address = code_address + GetInteger(aslr_space_start),
.code_num_pages = static_cast<s32>(code_size / PageSize),
.flags = flag,
.reslimit = Svc::InvalidHandle,
.system_resource_num_pages = static_cast<s32>(metadata.GetSystemResourceSize() / PageSize),
};
// Set the process name.
const auto& name = metadata.GetName();
static_assert(sizeof(params.name) <= sizeof(name));
std::memcpy(params.name.data(), name.data(), sizeof(params.name));
// Initialize for application process.
R_TRY(this->Initialize(params, metadata.GetKernelCapabilities(), res_limit,
KMemoryManager::Pool::Application, aslr_space_start));
// Assign remaining properties.
m_is_hbl = is_hbl;
m_ideal_core_id = metadata.GetMainThreadCore();
// Set up emulation context.
this->InitializeInterfaces();
// We succeeded.
R_SUCCEED();
}
void KProcess::LoadModule(CodeSet code_set, KProcessAddress base_addr) {
const auto ReprotectSegment = [&](const CodeSet::Segment& segment,
Svc::MemoryPermission permission) {
m_page_table.SetProcessMemoryPermission(segment.addr + base_addr, segment.size, permission);
};
this->GetMemory().WriteBlock(base_addr, code_set.memory.data(), code_set.memory.size());
ReprotectSegment(code_set.CodeSegment(), Svc::MemoryPermission::ReadExecute);
ReprotectSegment(code_set.RODataSegment(), Svc::MemoryPermission::Read);
ReprotectSegment(code_set.DataSegment(), Svc::MemoryPermission::ReadWrite);
#ifdef HAS_NCE
if (Settings::IsNceEnabled()) {
auto& buffer = m_kernel.System().DeviceMemory().buffer;
const auto& code = code_set.CodeSegment();
const auto& patch = code_set.PatchSegment();
buffer.Protect(GetInteger(base_addr + code.addr), code.size, true, true, true);
buffer.Protect(GetInteger(base_addr + patch.addr), patch.size, true, true, true);
ReprotectSegment(code_set.PatchSegment(), Svc::MemoryPermission::None);
}
#endif
}
void KProcess::InitializeInterfaces() {
this->GetMemory().SetCurrentPageTable(*this);
#ifdef HAS_NCE
if (this->Is64Bit() && Settings::IsNceEnabled()) {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmNce>(m_kernel.System(), true, i);
}
} else
#endif
if (this->Is64Bit()) {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic64>(
m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i);
}
} else {
for (size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
m_arm_interfaces[i] = std::make_unique<Core::ArmDynarmic32>(
m_kernel.System(), m_kernel.IsMulticore(), this,
static_cast<Core::DynarmicExclusiveMonitor&>(m_kernel.GetExclusiveMonitor()), i);
}
}
}
bool KProcess::InsertWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.type == DebugWatchpointType::None;
})};
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = addr;
watch->end_address = addr + size;
watch->type = type;
for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
page += PageSize) {
m_debug_page_refcounts[page]++;
this->GetMemory().MarkRegionDebug(page, PageSize, true);
}
return true;
}
bool KProcess::RemoveWatchpoint(KProcessAddress addr, u64 size, DebugWatchpointType type) {
const auto watch{std::find_if(m_watchpoints.begin(), m_watchpoints.end(), [&](const auto& wp) {
return wp.start_address == addr && wp.end_address == addr + size && wp.type == type;
})};
if (watch == m_watchpoints.end()) {
return false;
}
watch->start_address = 0;
watch->end_address = 0;
watch->type = DebugWatchpointType::None;
for (KProcessAddress page = Common::AlignDown(GetInteger(addr), PageSize); page < addr + size;
page += PageSize) {
m_debug_page_refcounts[page]--;
if (!m_debug_page_refcounts[page]) {
this->GetMemory().MarkRegionDebug(page, PageSize, false);
}
}
return true;
}
Core::Memory::Memory& KProcess::GetMemory() const {
// TODO: per-process memory
return m_kernel.System().ApplicationMemory();
}
} // namespace Kernel
|