1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
|
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <array>
#include <atomic>
#include <bitset>
#include <functional>
#include <memory>
#include <thread>
#include <unordered_set>
#include <utility>
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/thread.h"
#include "common/thread_worker.h"
#include "core/arm/arm_interface.h"
#include "core/arm/cpu_interrupt_handler.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/cpu_manager.h"
#include "core/device_memory.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/init/init_slab_setup.h"
#include "core/hle/kernel/k_client_port.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_memory_layout.h"
#include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_process.h"
#include "core/hle/kernel/k_resource_limit.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_shared_memory.h"
#include "core/hle/kernel/k_slab_heap.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/k_worker_task_manager.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/service_thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/result.h"
#include "core/hle/service/sm/sm.h"
#include "core/memory.h"
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
namespace Kernel {
struct KernelCore::Impl {
explicit Impl(Core::System& system_, KernelCore& kernel_)
: time_manager{system_}, object_list_container{kernel_},
service_threads_manager{1, "yuzu:ServiceThreadsManager"}, system{system_} {}
void SetMulticore(bool is_multi) {
is_multicore = is_multi;
}
void Initialize(KernelCore& kernel) {
global_scheduler_context = std::make_unique<Kernel::GlobalSchedulerContext>(kernel);
global_handle_table = std::make_unique<Kernel::KHandleTable>(kernel);
global_handle_table->Initialize(KHandleTable::MaxTableSize);
is_phantom_mode_for_singlecore = false;
InitializePhysicalCores();
// Derive the initial memory layout from the emulated board
Init::InitializeSlabResourceCounts(kernel);
DeriveInitialMemoryLayout();
Init::InitializeSlabHeaps(system, *memory_layout);
// Initialize kernel memory and resources.
InitializeSystemResourceLimit(kernel, system.CoreTiming());
InitializeMemoryLayout();
Init::InitializeKPageBufferSlabHeap(system);
InitializeSchedulers();
InitializeSuspendThreads();
InitializePreemption(kernel);
RegisterHostThread();
}
void InitializeCores() {
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
cores[core_id].Initialize(current_process->Is64BitProcess());
system.Memory().SetCurrentPageTable(*current_process, core_id);
}
}
void Shutdown() {
is_shutting_down.store(true, std::memory_order_relaxed);
SCOPE_EXIT({ is_shutting_down.store(false, std::memory_order_relaxed); });
process_list.clear();
// Close all open server ports.
std::unordered_set<KServerPort*> server_ports_;
{
std::lock_guard lk(server_ports_lock);
server_ports_ = server_ports;
server_ports.clear();
}
for (auto* server_port : server_ports_) {
server_port->Close();
}
// Close all open server sessions.
std::unordered_set<KServerSession*> server_sessions_;
{
std::lock_guard lk(server_sessions_lock);
server_sessions_ = server_sessions;
server_sessions.clear();
}
for (auto* server_session : server_sessions_) {
server_session->Close();
}
// Ensure that the object list container is finalized and properly shutdown.
object_list_container.Finalize();
// Ensures all service threads gracefully shutdown.
ClearServiceThreads();
next_object_id = 0;
next_kernel_process_id = KProcess::InitialKIPIDMin;
next_user_process_id = KProcess::ProcessIDMin;
next_thread_id = 1;
cores.clear();
global_handle_table->Finalize();
global_handle_table.reset();
preemption_event = nullptr;
for (auto& iter : named_ports) {
iter.second->Close();
}
named_ports.clear();
exclusive_monitor.reset();
// Cleanup persistent kernel objects
auto CleanupObject = [](KAutoObject* obj) {
if (obj) {
obj->Close();
obj = nullptr;
}
};
CleanupObject(hid_shared_mem);
CleanupObject(font_shared_mem);
CleanupObject(irs_shared_mem);
CleanupObject(time_shared_mem);
CleanupObject(system_resource_limit);
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
if (suspend_threads[core_id]) {
suspend_threads[core_id]->Close();
suspend_threads[core_id] = nullptr;
}
schedulers[core_id]->Finalize();
schedulers[core_id].reset();
}
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
next_host_thread_id = Core::Hardware::NUM_CPU_CORES;
// Close kernel objects that were not freed on shutdown
{
std::lock_guard lk(registered_in_use_objects_lock);
if (registered_in_use_objects.size()) {
for (auto& object : registered_in_use_objects) {
object->Close();
}
registered_in_use_objects.clear();
}
}
// Shutdown all processes.
if (current_process) {
current_process->Finalize();
// current_process->Close();
// TODO: The current process should be destroyed based on accurate ref counting after
// calling Close(). Adding a manual Destroy() call instead to avoid a memory leak.
current_process->Destroy();
current_process = nullptr;
}
// Track kernel objects that were not freed on shutdown
{
std::lock_guard lk(registered_objects_lock);
if (registered_objects.size()) {
LOG_WARNING(Kernel, "{} kernel objects were dangling on shutdown!",
registered_objects.size());
registered_objects.clear();
}
}
}
void InitializePhysicalCores() {
exclusive_monitor =
Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES);
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
schedulers[i] = std::make_unique<Kernel::KScheduler>(system, i);
cores.emplace_back(i, system, *schedulers[i], interrupts);
}
}
void InitializeSchedulers() {
for (u32 i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
cores[i].Scheduler().Initialize();
}
}
// Creates the default system resource limit
void InitializeSystemResourceLimit(KernelCore& kernel,
const Core::Timing::CoreTiming& core_timing) {
system_resource_limit = KResourceLimit::Create(system.Kernel());
system_resource_limit->Initialize(&core_timing);
const auto [total_size, kernel_size] = memory_layout->GetTotalAndKernelMemorySizes();
// If setting the default system values fails, then something seriously wrong has occurred.
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::PhysicalMemory, total_size)
.IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::Threads, 800).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::Events, 900).IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::TransferMemory, 200)
.IsSuccess());
ASSERT(system_resource_limit->SetLimitValue(LimitableResource::Sessions, 1133).IsSuccess());
system_resource_limit->Reserve(LimitableResource::PhysicalMemory, kernel_size);
// Reserve secure applet memory, introduced in firmware 5.0.0
constexpr u64 secure_applet_memory_size{4_MiB};
ASSERT(system_resource_limit->Reserve(LimitableResource::PhysicalMemory,
secure_applet_memory_size));
}
void InitializePreemption(KernelCore& kernel) {
preemption_event = Core::Timing::CreateEvent(
"PreemptionCallback", [this, &kernel](std::uintptr_t, std::chrono::nanoseconds) {
{
KScopedSchedulerLock lock(kernel);
global_scheduler_context->PreemptThreads();
}
const auto time_interval = std::chrono::nanoseconds{std::chrono::milliseconds(10)};
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
});
const auto time_interval = std::chrono::nanoseconds{std::chrono::milliseconds(10)};
system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
}
void InitializeSuspendThreads() {
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
suspend_threads[core_id] = KThread::Create(system.Kernel());
ASSERT(KThread::InitializeHighPriorityThread(system, suspend_threads[core_id], {}, {},
core_id)
.IsSuccess());
suspend_threads[core_id]->SetName(fmt::format("SuspendThread:{}", core_id));
}
}
void MakeCurrentProcess(KProcess* process) {
current_process = process;
}
static inline thread_local u32 host_thread_id = UINT32_MAX;
/// Gets the host thread ID for the caller, allocating a new one if this is the first time
u32 GetHostThreadId(std::size_t core_id) {
if (host_thread_id == UINT32_MAX) {
// The first four slots are reserved for CPU core threads
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
host_thread_id = static_cast<u32>(core_id);
}
return host_thread_id;
}
/// Gets the host thread ID for the caller, allocating a new one if this is the first time
u32 GetHostThreadId() {
if (host_thread_id == UINT32_MAX) {
host_thread_id = next_host_thread_id++;
}
return host_thread_id;
}
// Gets the dummy KThread for the caller, allocating a new one if this is the first time
KThread* GetHostDummyThread() {
auto make_thread = [this]() {
KThread* thread = KThread::Create(system.Kernel());
ASSERT(KThread::InitializeDummyThread(thread).IsSuccess());
thread->SetName(fmt::format("DummyThread:{}", GetHostThreadId()));
return thread;
};
thread_local KThread* saved_thread = make_thread();
return saved_thread;
}
/// Registers a CPU core thread by allocating a host thread ID for it
void RegisterCoreThread(std::size_t core_id) {
ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
const auto this_id = GetHostThreadId(core_id);
if (!is_multicore) {
single_core_thread_id = this_id;
}
}
/// Registers a new host thread by allocating a host thread ID for it
void RegisterHostThread() {
[[maybe_unused]] const auto this_id = GetHostThreadId();
[[maybe_unused]] const auto dummy_thread = GetHostDummyThread();
}
[[nodiscard]] u32 GetCurrentHostThreadID() {
const auto this_id = GetHostThreadId();
if (!is_multicore && single_core_thread_id == this_id) {
return static_cast<u32>(system.GetCpuManager().CurrentCore());
}
return this_id;
}
bool IsPhantomModeForSingleCore() const {
return is_phantom_mode_for_singlecore;
}
void SetIsPhantomModeForSingleCore(bool value) {
ASSERT(!is_multicore);
is_phantom_mode_for_singlecore = value;
}
bool IsShuttingDown() const {
return is_shutting_down.load(std::memory_order_relaxed);
}
KThread* GetCurrentEmuThread() {
// If we are shutting down the kernel, none of this is relevant anymore.
if (IsShuttingDown()) {
return {};
}
const auto thread_id = GetCurrentHostThreadID();
if (thread_id >= Core::Hardware::NUM_CPU_CORES) {
return GetHostDummyThread();
}
return schedulers[thread_id]->GetCurrentThread();
}
void DeriveInitialMemoryLayout() {
memory_layout = std::make_unique<KMemoryLayout>();
// Insert the root region for the virtual memory tree, from which all other regions will
// derive.
memory_layout->GetVirtualMemoryRegionTree().InsertDirectly(
KernelVirtualAddressSpaceBase,
KernelVirtualAddressSpaceBase + KernelVirtualAddressSpaceSize - 1);
// Insert the root region for the physical memory tree, from which all other regions will
// derive.
memory_layout->GetPhysicalMemoryRegionTree().InsertDirectly(
KernelPhysicalAddressSpaceBase,
KernelPhysicalAddressSpaceBase + KernelPhysicalAddressSpaceSize - 1);
// Save start and end for ease of use.
const VAddr code_start_virt_addr = KernelVirtualAddressCodeBase;
const VAddr code_end_virt_addr = KernelVirtualAddressCodeEnd;
// Setup the containing kernel region.
constexpr size_t KernelRegionSize = 1_GiB;
constexpr size_t KernelRegionAlign = 1_GiB;
constexpr VAddr kernel_region_start =
Common::AlignDown(code_start_virt_addr, KernelRegionAlign);
size_t kernel_region_size = KernelRegionSize;
if (!(kernel_region_start + KernelRegionSize - 1 <= KernelVirtualAddressSpaceLast)) {
kernel_region_size = KernelVirtualAddressSpaceEnd - kernel_region_start;
}
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
kernel_region_start, kernel_region_size, KMemoryRegionType_Kernel));
// Setup the code region.
constexpr size_t CodeRegionAlign = PageSize;
constexpr VAddr code_region_start =
Common::AlignDown(code_start_virt_addr, CodeRegionAlign);
constexpr VAddr code_region_end = Common::AlignUp(code_end_virt_addr, CodeRegionAlign);
constexpr size_t code_region_size = code_region_end - code_region_start;
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
code_region_start, code_region_size, KMemoryRegionType_KernelCode));
// Setup board-specific device physical regions.
Init::SetupDevicePhysicalMemoryRegions(*memory_layout);
// Determine the amount of space needed for the misc region.
size_t misc_region_needed_size;
{
// Each core has a one page stack for all three stack types (Main, Idle, Exception).
misc_region_needed_size = Core::Hardware::NUM_CPU_CORES * (3 * (PageSize + PageSize));
// Account for each auto-map device.
for (const auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.HasTypeAttribute(KMemoryRegionAttr_ShouldKernelMap)) {
// Check that the region is valid.
ASSERT(region.GetEndAddress() != 0);
// Account for the region.
misc_region_needed_size +=
PageSize + (Common::AlignUp(region.GetLastAddress(), PageSize) -
Common::AlignDown(region.GetAddress(), PageSize));
}
}
// Multiply the needed size by three, to account for the need for guard space.
misc_region_needed_size *= 3;
}
// Decide on the actual size for the misc region.
constexpr size_t MiscRegionAlign = KernelAslrAlignment;
constexpr size_t MiscRegionMinimumSize = 32_MiB;
const size_t misc_region_size = Common::AlignUp(
std::max(misc_region_needed_size, MiscRegionMinimumSize), MiscRegionAlign);
ASSERT(misc_region_size > 0);
// Setup the misc region.
const VAddr misc_region_start =
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
misc_region_size, MiscRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
misc_region_start, misc_region_size, KMemoryRegionType_KernelMisc));
// Setup the stack region.
constexpr size_t StackRegionSize = 14_MiB;
constexpr size_t StackRegionAlign = KernelAslrAlignment;
const VAddr stack_region_start =
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
StackRegionSize, StackRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
stack_region_start, StackRegionSize, KMemoryRegionType_KernelStack));
// Determine the size of the resource region.
const size_t resource_region_size = memory_layout->GetResourceRegionSizeForInit();
// Determine the size of the slab region.
const size_t slab_region_size =
Common::AlignUp(Init::CalculateTotalSlabHeapSize(system.Kernel()), PageSize);
ASSERT(slab_region_size <= resource_region_size);
// Setup the slab region.
const PAddr code_start_phys_addr = KernelPhysicalAddressCodeBase;
const PAddr code_end_phys_addr = code_start_phys_addr + code_region_size;
const PAddr slab_start_phys_addr = code_end_phys_addr;
const PAddr slab_end_phys_addr = slab_start_phys_addr + slab_region_size;
constexpr size_t SlabRegionAlign = KernelAslrAlignment;
const size_t slab_region_needed_size =
Common::AlignUp(code_end_phys_addr + slab_region_size, SlabRegionAlign) -
Common::AlignDown(code_end_phys_addr, SlabRegionAlign);
const VAddr slab_region_start =
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
slab_region_needed_size, SlabRegionAlign, KMemoryRegionType_Kernel) +
(code_end_phys_addr % SlabRegionAlign);
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
slab_region_start, slab_region_size, KMemoryRegionType_KernelSlab));
// Setup the temp region.
constexpr size_t TempRegionSize = 128_MiB;
constexpr size_t TempRegionAlign = KernelAslrAlignment;
const VAddr temp_region_start =
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegion(
TempRegionSize, TempRegionAlign, KMemoryRegionType_Kernel);
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(temp_region_start, TempRegionSize,
KMemoryRegionType_KernelTemp));
// Automatically map in devices that have auto-map attributes.
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
// We only care about kernel regions.
if (!region.IsDerivedFrom(KMemoryRegionType_Kernel)) {
continue;
}
// Check whether we should map the region.
if (!region.HasTypeAttribute(KMemoryRegionAttr_ShouldKernelMap)) {
continue;
}
// If this region has already been mapped, no need to consider it.
if (region.HasTypeAttribute(KMemoryRegionAttr_DidKernelMap)) {
continue;
}
// Check that the region is valid.
ASSERT(region.GetEndAddress() != 0);
// Set the attribute to note we've mapped this region.
region.SetTypeAttribute(KMemoryRegionAttr_DidKernelMap);
// Create a virtual pair region and insert it into the tree.
const PAddr map_phys_addr = Common::AlignDown(region.GetAddress(), PageSize);
const size_t map_size =
Common::AlignUp(region.GetEndAddress(), PageSize) - map_phys_addr;
const VAddr map_virt_addr =
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
map_size, PageSize, KMemoryRegionType_KernelMisc, PageSize);
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
map_virt_addr, map_size, KMemoryRegionType_KernelMiscMappedDevice));
region.SetPairAddress(map_virt_addr + region.GetAddress() - map_phys_addr);
}
Init::SetupDramPhysicalMemoryRegions(*memory_layout);
// Insert a physical region for the kernel code region.
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
code_start_phys_addr, code_region_size, KMemoryRegionType_DramKernelCode));
// Insert a physical region for the kernel slab region.
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
slab_start_phys_addr, slab_region_size, KMemoryRegionType_DramKernelSlab));
// Determine size available for kernel page table heaps, requiring > 8 MB.
const PAddr resource_end_phys_addr = slab_start_phys_addr + resource_region_size;
const size_t page_table_heap_size = resource_end_phys_addr - slab_end_phys_addr;
ASSERT(page_table_heap_size / 4_MiB > 2);
// Insert a physical region for the kernel page table heap region
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
slab_end_phys_addr, page_table_heap_size, KMemoryRegionType_DramKernelPtHeap));
// All DRAM regions that we haven't tagged by this point will be mapped under the linear
// mapping. Tag them.
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.GetType() == KMemoryRegionType_Dram) {
// Check that the region is valid.
ASSERT(region.GetEndAddress() != 0);
// Set the linear map attribute.
region.SetTypeAttribute(KMemoryRegionAttr_LinearMapped);
}
}
// Get the linear region extents.
const auto linear_extents =
memory_layout->GetPhysicalMemoryRegionTree().GetDerivedRegionExtents(
KMemoryRegionAttr_LinearMapped);
ASSERT(linear_extents.GetEndAddress() != 0);
// Setup the linear mapping region.
constexpr size_t LinearRegionAlign = 1_GiB;
const PAddr aligned_linear_phys_start =
Common::AlignDown(linear_extents.GetAddress(), LinearRegionAlign);
const size_t linear_region_size =
Common::AlignUp(linear_extents.GetEndAddress(), LinearRegionAlign) -
aligned_linear_phys_start;
const VAddr linear_region_start =
memory_layout->GetVirtualMemoryRegionTree().GetRandomAlignedRegionWithGuard(
linear_region_size, LinearRegionAlign, KMemoryRegionType_None, LinearRegionAlign);
const u64 linear_region_phys_to_virt_diff = linear_region_start - aligned_linear_phys_start;
// Map and create regions for all the linearly-mapped data.
{
PAddr cur_phys_addr = 0;
u64 cur_size = 0;
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (!region.HasTypeAttribute(KMemoryRegionAttr_LinearMapped)) {
continue;
}
ASSERT(region.GetEndAddress() != 0);
if (cur_size == 0) {
cur_phys_addr = region.GetAddress();
cur_size = region.GetSize();
} else if (cur_phys_addr + cur_size == region.GetAddress()) {
cur_size += region.GetSize();
} else {
cur_phys_addr = region.GetAddress();
cur_size = region.GetSize();
}
const VAddr region_virt_addr =
region.GetAddress() + linear_region_phys_to_virt_diff;
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
region_virt_addr, region.GetSize(),
GetTypeForVirtualLinearMapping(region.GetType())));
region.SetPairAddress(region_virt_addr);
KMemoryRegion* virt_region =
memory_layout->GetVirtualMemoryRegionTree().FindModifiable(region_virt_addr);
ASSERT(virt_region != nullptr);
virt_region->SetPairAddress(region.GetAddress());
}
}
// Insert regions for the initial page table region.
ASSERT(memory_layout->GetPhysicalMemoryRegionTree().Insert(
resource_end_phys_addr, KernelPageTableHeapSize, KMemoryRegionType_DramKernelInitPt));
ASSERT(memory_layout->GetVirtualMemoryRegionTree().Insert(
resource_end_phys_addr + linear_region_phys_to_virt_diff, KernelPageTableHeapSize,
KMemoryRegionType_VirtualDramKernelInitPt));
// All linear-mapped DRAM regions that we haven't tagged by this point will be allocated to
// some pool partition. Tag them.
for (auto& region : memory_layout->GetPhysicalMemoryRegionTree()) {
if (region.GetType() == (KMemoryRegionType_Dram | KMemoryRegionAttr_LinearMapped)) {
region.SetType(KMemoryRegionType_DramPoolPartition);
}
}
// Setup all other memory regions needed to arrange the pool partitions.
Init::SetupPoolPartitionMemoryRegions(*memory_layout);
// Cache all linear regions in their own trees for faster access, later.
memory_layout->InitializeLinearMemoryRegionTrees(aligned_linear_phys_start,
linear_region_start);
}
void InitializeMemoryLayout() {
const auto system_pool = memory_layout->GetKernelSystemPoolRegionPhysicalExtents();
// Initialize the memory manager.
memory_manager = std::make_unique<KMemoryManager>(system);
const auto& management_region = memory_layout->GetPoolManagementRegion();
ASSERT(management_region.GetEndAddress() != 0);
memory_manager->Initialize(management_region.GetAddress(), management_region.GetSize());
// Setup memory regions for emulated processes
// TODO(bunnei): These should not be hardcoded regions initialized within the kernel
constexpr std::size_t hid_size{0x40000};
constexpr std::size_t font_size{0x1100000};
constexpr std::size_t irs_size{0x8000};
constexpr std::size_t time_size{0x1000};
const PAddr hid_phys_addr{system_pool.GetAddress()};
const PAddr font_phys_addr{system_pool.GetAddress() + hid_size};
const PAddr irs_phys_addr{system_pool.GetAddress() + hid_size + font_size};
const PAddr time_phys_addr{system_pool.GetAddress() + hid_size + font_size + irs_size};
hid_shared_mem = KSharedMemory::Create(system.Kernel());
font_shared_mem = KSharedMemory::Create(system.Kernel());
irs_shared_mem = KSharedMemory::Create(system.Kernel());
time_shared_mem = KSharedMemory::Create(system.Kernel());
hid_shared_mem->Initialize(system.DeviceMemory(), nullptr,
{hid_phys_addr, hid_size / PageSize},
Svc::MemoryPermission::None, Svc::MemoryPermission::Read,
hid_phys_addr, hid_size, "HID:SharedMemory");
font_shared_mem->Initialize(system.DeviceMemory(), nullptr,
{font_phys_addr, font_size / PageSize},
Svc::MemoryPermission::None, Svc::MemoryPermission::Read,
font_phys_addr, font_size, "Font:SharedMemory");
irs_shared_mem->Initialize(system.DeviceMemory(), nullptr,
{irs_phys_addr, irs_size / PageSize},
Svc::MemoryPermission::None, Svc::MemoryPermission::Read,
irs_phys_addr, irs_size, "IRS:SharedMemory");
time_shared_mem->Initialize(system.DeviceMemory(), nullptr,
{time_phys_addr, time_size / PageSize},
Svc::MemoryPermission::None, Svc::MemoryPermission::Read,
time_phys_addr, time_size, "Time:SharedMemory");
}
KClientPort* CreateNamedServicePort(std::string name) {
auto search = service_interface_factory.find(name);
if (search == service_interface_factory.end()) {
UNIMPLEMENTED();
return {};
}
KClientPort* port = &search->second(system.ServiceManager(), system);
{
std::lock_guard lk(server_ports_lock);
server_ports.insert(&port->GetParent()->GetServerPort());
}
return port;
}
std::weak_ptr<Kernel::ServiceThread> CreateServiceThread(KernelCore& kernel,
const std::string& name) {
auto service_thread = std::make_shared<Kernel::ServiceThread>(kernel, 1, name);
service_threads_manager.QueueWork(
[this, service_thread]() { service_threads.emplace(service_thread); });
return service_thread;
}
void ReleaseServiceThread(std::weak_ptr<Kernel::ServiceThread> service_thread) {
if (auto strong_ptr = service_thread.lock()) {
service_threads_manager.QueueWork(
[this, strong_ptr{std::move(strong_ptr)}]() { service_threads.erase(strong_ptr); });
}
}
void ClearServiceThreads() {
service_threads_manager.QueueWork([this]() { service_threads.clear(); });
}
std::mutex server_ports_lock;
std::mutex server_sessions_lock;
std::mutex registered_objects_lock;
std::mutex registered_in_use_objects_lock;
std::atomic<u32> next_object_id{0};
std::atomic<u64> next_kernel_process_id{KProcess::InitialKIPIDMin};
std::atomic<u64> next_user_process_id{KProcess::ProcessIDMin};
std::atomic<u64> next_thread_id{1};
// Lists all processes that exist in the current session.
std::vector<KProcess*> process_list;
KProcess* current_process{};
std::unique_ptr<Kernel::GlobalSchedulerContext> global_scheduler_context;
Kernel::TimeManager time_manager;
Init::KSlabResourceCounts slab_resource_counts{};
KResourceLimit* system_resource_limit{};
std::shared_ptr<Core::Timing::EventType> preemption_event;
// This is the kernel's handle table or supervisor handle table which
// stores all the objects in place.
std::unique_ptr<KHandleTable> global_handle_table;
KAutoObjectWithListContainer object_list_container;
/// Map of named ports managed by the kernel, which can be retrieved using
/// the ConnectToPort SVC.
std::unordered_map<std::string, ServiceInterfaceFactory> service_interface_factory;
NamedPortTable named_ports;
std::unordered_set<KServerPort*> server_ports;
std::unordered_set<KServerSession*> server_sessions;
std::unordered_set<KAutoObject*> registered_objects;
std::unordered_set<KAutoObject*> registered_in_use_objects;
std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
std::vector<Kernel::PhysicalCore> cores;
// Next host thead ID to use, 0-3 IDs represent core threads, >3 represent others
std::atomic<u32> next_host_thread_id{Core::Hardware::NUM_CPU_CORES};
// Kernel memory management
std::unique_ptr<KMemoryManager> memory_manager;
// Shared memory for services
Kernel::KSharedMemory* hid_shared_mem{};
Kernel::KSharedMemory* font_shared_mem{};
Kernel::KSharedMemory* irs_shared_mem{};
Kernel::KSharedMemory* time_shared_mem{};
// Memory layout
std::unique_ptr<KMemoryLayout> memory_layout;
// Threads used for services
std::unordered_set<std::shared_ptr<Kernel::ServiceThread>> service_threads;
Common::ThreadWorker service_threads_manager;
std::array<KThread*, Core::Hardware::NUM_CPU_CORES> suspend_threads;
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES> interrupts{};
std::array<std::unique_ptr<Kernel::KScheduler>, Core::Hardware::NUM_CPU_CORES> schedulers{};
bool is_multicore{};
std::atomic_bool is_shutting_down{};
bool is_phantom_mode_for_singlecore{};
u32 single_core_thread_id{};
std::array<u64, Core::Hardware::NUM_CPU_CORES> svc_ticks{};
KWorkerTaskManager worker_task_manager;
// System context
Core::System& system;
};
KernelCore::KernelCore(Core::System& system) : impl{std::make_unique<Impl>(system, *this)} {}
KernelCore::~KernelCore() = default;
void KernelCore::SetMulticore(bool is_multicore) {
impl->SetMulticore(is_multicore);
}
void KernelCore::Initialize() {
slab_heap_container = std::make_unique<SlabHeapContainer>();
impl->Initialize(*this);
}
void KernelCore::InitializeCores() {
impl->InitializeCores();
}
void KernelCore::Shutdown() {
impl->Shutdown();
}
const KResourceLimit* KernelCore::GetSystemResourceLimit() const {
return impl->system_resource_limit;
}
KResourceLimit* KernelCore::GetSystemResourceLimit() {
return impl->system_resource_limit;
}
KScopedAutoObject<KThread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
return impl->global_handle_table->GetObject<KThread>(handle);
}
void KernelCore::AppendNewProcess(KProcess* process) {
impl->process_list.push_back(process);
}
void KernelCore::MakeCurrentProcess(KProcess* process) {
impl->MakeCurrentProcess(process);
}
KProcess* KernelCore::CurrentProcess() {
return impl->current_process;
}
const KProcess* KernelCore::CurrentProcess() const {
return impl->current_process;
}
const std::vector<KProcess*>& KernelCore::GetProcessList() const {
return impl->process_list;
}
Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() {
return *impl->global_scheduler_context;
}
const Kernel::GlobalSchedulerContext& KernelCore::GlobalSchedulerContext() const {
return *impl->global_scheduler_context;
}
Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) {
return *impl->schedulers[id];
}
const Kernel::KScheduler& KernelCore::Scheduler(std::size_t id) const {
return *impl->schedulers[id];
}
Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) {
return impl->cores[id];
}
const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
return impl->cores[id];
}
size_t KernelCore::CurrentPhysicalCoreIndex() const {
const u32 core_id = impl->GetCurrentHostThreadID();
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
return Core::Hardware::NUM_CPU_CORES - 1;
}
return core_id;
}
Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() {
return impl->cores[CurrentPhysicalCoreIndex()];
}
const Kernel::PhysicalCore& KernelCore::CurrentPhysicalCore() const {
return impl->cores[CurrentPhysicalCoreIndex()];
}
Kernel::KScheduler* KernelCore::CurrentScheduler() {
u32 core_id = impl->GetCurrentHostThreadID();
if (core_id >= Core::Hardware::NUM_CPU_CORES) {
// This is expected when called from not a guest thread
return {};
}
return impl->schedulers[core_id].get();
}
std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts() {
return impl->interrupts;
}
const std::array<Core::CPUInterruptHandler, Core::Hardware::NUM_CPU_CORES>& KernelCore::Interrupts()
const {
return impl->interrupts;
}
Kernel::TimeManager& KernelCore::TimeManager() {
return impl->time_manager;
}
const Kernel::TimeManager& KernelCore::TimeManager() const {
return impl->time_manager;
}
Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
return *impl->exclusive_monitor;
}
const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
return *impl->exclusive_monitor;
}
KAutoObjectWithListContainer& KernelCore::ObjectListContainer() {
return impl->object_list_container;
}
const KAutoObjectWithListContainer& KernelCore::ObjectListContainer() const {
return impl->object_list_container;
}
void KernelCore::InvalidateAllInstructionCaches() {
for (auto& physical_core : impl->cores) {
physical_core.ArmInterface().ClearInstructionCache();
}
}
void KernelCore::InvalidateCpuInstructionCacheRange(VAddr addr, std::size_t size) {
for (auto& physical_core : impl->cores) {
if (!physical_core.IsInitialized()) {
continue;
}
physical_core.ArmInterface().InvalidateCacheRange(addr, size);
}
}
void KernelCore::PrepareReschedule(std::size_t id) {
// TODO: Reimplement, this
}
void KernelCore::RegisterNamedService(std::string name, ServiceInterfaceFactory&& factory) {
impl->service_interface_factory.emplace(std::move(name), factory);
}
KClientPort* KernelCore::CreateNamedServicePort(std::string name) {
return impl->CreateNamedServicePort(std::move(name));
}
void KernelCore::RegisterServerSession(KServerSession* server_session) {
std::lock_guard lk(impl->server_sessions_lock);
impl->server_sessions.insert(server_session);
}
void KernelCore::UnregisterServerSession(KServerSession* server_session) {
std::lock_guard lk(impl->server_sessions_lock);
impl->server_sessions.erase(server_session);
}
void KernelCore::RegisterKernelObject(KAutoObject* object) {
std::lock_guard lk(impl->registered_objects_lock);
impl->registered_objects.insert(object);
}
void KernelCore::UnregisterKernelObject(KAutoObject* object) {
std::lock_guard lk(impl->registered_objects_lock);
impl->registered_objects.erase(object);
}
void KernelCore::RegisterInUseObject(KAutoObject* object) {
std::lock_guard lk(impl->registered_in_use_objects_lock);
impl->registered_in_use_objects.insert(object);
}
void KernelCore::UnregisterInUseObject(KAutoObject* object) {
std::lock_guard lk(impl->registered_in_use_objects_lock);
impl->registered_in_use_objects.erase(object);
}
bool KernelCore::IsValidNamedPort(NamedPortTable::const_iterator port) const {
return port != impl->named_ports.cend();
}
u32 KernelCore::CreateNewObjectID() {
return impl->next_object_id++;
}
u64 KernelCore::CreateNewThreadID() {
return impl->next_thread_id++;
}
u64 KernelCore::CreateNewKernelProcessID() {
return impl->next_kernel_process_id++;
}
u64 KernelCore::CreateNewUserProcessID() {
return impl->next_user_process_id++;
}
KHandleTable& KernelCore::GlobalHandleTable() {
return *impl->global_handle_table;
}
const KHandleTable& KernelCore::GlobalHandleTable() const {
return *impl->global_handle_table;
}
void KernelCore::RegisterCoreThread(std::size_t core_id) {
impl->RegisterCoreThread(core_id);
}
void KernelCore::RegisterHostThread() {
impl->RegisterHostThread();
}
u32 KernelCore::GetCurrentHostThreadID() const {
return impl->GetCurrentHostThreadID();
}
KThread* KernelCore::GetCurrentEmuThread() const {
return impl->GetCurrentEmuThread();
}
KMemoryManager& KernelCore::MemoryManager() {
return *impl->memory_manager;
}
const KMemoryManager& KernelCore::MemoryManager() const {
return *impl->memory_manager;
}
Kernel::KSharedMemory& KernelCore::GetHidSharedMem() {
return *impl->hid_shared_mem;
}
const Kernel::KSharedMemory& KernelCore::GetHidSharedMem() const {
return *impl->hid_shared_mem;
}
Kernel::KSharedMemory& KernelCore::GetFontSharedMem() {
return *impl->font_shared_mem;
}
const Kernel::KSharedMemory& KernelCore::GetFontSharedMem() const {
return *impl->font_shared_mem;
}
Kernel::KSharedMemory& KernelCore::GetIrsSharedMem() {
return *impl->irs_shared_mem;
}
const Kernel::KSharedMemory& KernelCore::GetIrsSharedMem() const {
return *impl->irs_shared_mem;
}
Kernel::KSharedMemory& KernelCore::GetTimeSharedMem() {
return *impl->time_shared_mem;
}
const Kernel::KSharedMemory& KernelCore::GetTimeSharedMem() const {
return *impl->time_shared_mem;
}
void KernelCore::Suspend(bool in_suspention) {
const bool should_suspend = exception_exited || in_suspention;
{
KScopedSchedulerLock lock(*this);
const auto state = should_suspend ? ThreadState::Runnable : ThreadState::Waiting;
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
impl->suspend_threads[core_id]->SetState(state);
impl->suspend_threads[core_id]->SetWaitReasonForDebugging(
ThreadWaitReasonForDebugging::Suspended);
if (!should_suspend) {
impl->suspend_threads[core_id]->DisableDispatch();
}
}
}
}
bool KernelCore::IsMulticore() const {
return impl->is_multicore;
}
bool KernelCore::IsShuttingDown() const {
return impl->IsShuttingDown();
}
void KernelCore::ExceptionalExit() {
exception_exited = true;
Suspend(true);
}
void KernelCore::EnterSVCProfile() {
impl->svc_ticks[CurrentPhysicalCoreIndex()] = MicroProfileEnter(MICROPROFILE_TOKEN(Kernel_SVC));
}
void KernelCore::ExitSVCProfile() {
MicroProfileLeave(MICROPROFILE_TOKEN(Kernel_SVC), impl->svc_ticks[CurrentPhysicalCoreIndex()]);
}
std::weak_ptr<Kernel::ServiceThread> KernelCore::CreateServiceThread(const std::string& name) {
return impl->CreateServiceThread(*this, name);
}
void KernelCore::ReleaseServiceThread(std::weak_ptr<Kernel::ServiceThread> service_thread) {
impl->ReleaseServiceThread(service_thread);
}
Init::KSlabResourceCounts& KernelCore::SlabResourceCounts() {
return impl->slab_resource_counts;
}
const Init::KSlabResourceCounts& KernelCore::SlabResourceCounts() const {
return impl->slab_resource_counts;
}
KWorkerTaskManager& KernelCore::WorkerTaskManager() {
return impl->worker_task_manager;
}
const KWorkerTaskManager& KernelCore::WorkerTaskManager() const {
return impl->worker_task_manager;
}
const KMemoryLayout& KernelCore::MemoryLayout() const {
return *impl->memory_layout;
}
bool KernelCore::IsPhantomModeForSingleCore() const {
return impl->IsPhantomModeForSingleCore();
}
void KernelCore::SetIsPhantomModeForSingleCore(bool value) {
impl->SetIsPhantomModeForSingleCore(value);
}
Core::System& KernelCore::System() {
return impl->system;
}
const Core::System& KernelCore::System() const {
return impl->system;
}
} // namespace Kernel
|