1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include <array>
#include <cstddef>
#include <string>
#include <vector>
#include <boost/smart_ptr/intrusive_ptr.hpp>
#include "common/common_types.h"
#include "core/hle/result.h"
namespace Kernel {
using Handle = u32;
class Thread;
// TODO: Verify code
const ResultCode ERR_OUT_OF_HANDLES(ErrorDescription::OutOfMemory, ErrorModule::Kernel,
ErrorSummary::OutOfResource, ErrorLevel::Temporary);
// TOOD: Verify code
const ResultCode ERR_INVALID_HANDLE(ErrorDescription::InvalidHandle, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
enum KernelHandle : Handle {
CurrentThread = 0xFFFF8000,
CurrentProcess = 0xFFFF8001,
};
enum class HandleType : u32 {
Unknown,
Event,
Mutex,
SharedMemory,
Thread,
Process,
AddressArbiter,
Semaphore,
Timer,
ResourceLimit,
CodeSet,
ClientPort,
ServerPort,
ClientSession,
ServerSession,
};
enum {
DEFAULT_STACK_SIZE = 0x4000,
};
enum class ResetType {
OneShot,
Sticky,
Pulse,
};
class Object : NonCopyable {
public:
virtual ~Object() {}
/// Returns a unique identifier for the object. For debugging purposes only.
unsigned int GetObjectId() const {
return object_id;
}
virtual std::string GetTypeName() const {
return "[BAD KERNEL OBJECT TYPE]";
}
virtual std::string GetName() const {
return "[UNKNOWN KERNEL OBJECT]";
}
virtual Kernel::HandleType GetHandleType() const = 0;
/**
* Check if a thread can wait on the object
* @return True if a thread can wait on the object, otherwise false
*/
bool IsWaitable() const {
switch (GetHandleType()) {
case HandleType::Event:
case HandleType::Mutex:
case HandleType::Thread:
case HandleType::Semaphore:
case HandleType::Timer:
case HandleType::ServerPort:
case HandleType::ServerSession:
return true;
case HandleType::Unknown:
case HandleType::SharedMemory:
case HandleType::Process:
case HandleType::AddressArbiter:
case HandleType::ResourceLimit:
case HandleType::CodeSet:
case HandleType::ClientPort:
case HandleType::ClientSession:
return false;
}
}
public:
static unsigned int next_object_id;
private:
friend void intrusive_ptr_add_ref(Object*);
friend void intrusive_ptr_release(Object*);
unsigned int ref_count = 0;
unsigned int object_id = next_object_id++;
};
// Special functions used by boost::instrusive_ptr to do automatic ref-counting
inline void intrusive_ptr_add_ref(Object* object) {
++object->ref_count;
}
inline void intrusive_ptr_release(Object* object) {
if (--object->ref_count == 0) {
delete object;
}
}
template <typename T>
using SharedPtr = boost::intrusive_ptr<T>;
/// Class that represents a Kernel object that a thread can be waiting on
class WaitObject : public Object {
public:
/**
* Check if the specified thread should wait until the object is available
* @param thread The thread about which we're deciding.
* @return True if the current thread should wait due to this object being unavailable
*/
virtual bool ShouldWait(Thread* thread) const = 0;
/// Acquire/lock the object for the specified thread if it is available
virtual void Acquire(Thread* thread) = 0;
/**
* Add a thread to wait on this object
* @param thread Pointer to thread to add
*/
virtual void AddWaitingThread(SharedPtr<Thread> thread);
/**
* Removes a thread from waiting on this object (e.g. if it was resumed already)
* @param thread Pointer to thread to remove
*/
void RemoveWaitingThread(Thread* thread);
/**
* Wake up all threads waiting on this object that can be awoken, in priority order,
* and set the synchronization result and output of the thread.
*/
void WakeupAllWaitingThreads();
/// Obtains the highest priority thread that is ready to run from this object's waiting list.
SharedPtr<Thread> GetHighestPriorityReadyThread();
/// Get a const reference to the waiting threads list for debug use
const std::vector<SharedPtr<Thread>>& GetWaitingThreads() const;
private:
/// Threads waiting for this object to become available
std::vector<SharedPtr<Thread>> waiting_threads;
};
/**
* This class allows the creation of Handles, which are references to objects that can be tested
* for validity and looked up. Here they are used to pass references to kernel objects to/from the
* emulated process. it has been designed so that it follows the same handle format and has
* approximately the same restrictions as the handle manager in the CTR-OS.
*
* Handles contain two sub-fields: a slot index (bits 31:15) and a generation value (bits 14:0).
* The slot index is used to index into the arrays in this class to access the data corresponding
* to the Handle.
*
* To prevent accidental use of a freed Handle whose slot has already been reused, a global counter
* is kept and incremented every time a Handle is created. This is the Handle's "generation". The
* value of the counter is stored into the Handle as well as in the handle table (in the
* "generations" array). When looking up a handle, the Handle's generation must match with the
* value stored on the class, otherwise the Handle is considered invalid.
*
* To find free slots when allocating a Handle without needing to scan the entire object array, the
* generations field of unallocated slots is re-purposed as a linked list of indices to free slots.
* When a Handle is created, an index is popped off the list and used for the new Handle. When it
* is destroyed, it is again pushed onto the list to be re-used by the next allocation. It is
* likely that this allocation strategy differs from the one used in CTR-OS, but this hasn't been
* verified and isn't likely to cause any problems.
*/
class HandleTable final : NonCopyable {
public:
HandleTable();
/**
* Allocates a handle for the given object.
* @return The created Handle or one of the following errors:
* - `ERR_OUT_OF_HANDLES`: the maximum number of handles has been exceeded.
*/
ResultVal<Handle> Create(SharedPtr<Object> obj);
/**
* Returns a new handle that points to the same object as the passed in handle.
* @return The duplicated Handle or one of the following errors:
* - `ERR_INVALID_HANDLE`: an invalid handle was passed in.
* - Any errors returned by `Create()`.
*/
ResultVal<Handle> Duplicate(Handle handle);
/**
* Closes a handle, removing it from the table and decreasing the object's ref-count.
* @return `RESULT_SUCCESS` or one of the following errors:
* - `ERR_INVALID_HANDLE`: an invalid handle was passed in.
*/
ResultCode Close(Handle handle);
/// Checks if a handle is valid and points to an existing object.
bool IsValid(Handle handle) const;
/**
* Looks up a handle.
* @return Pointer to the looked-up object, or `nullptr` if the handle is not valid.
*/
SharedPtr<Object> GetGeneric(Handle handle) const;
/**
* Looks up a handle while verifying its type.
* @return Pointer to the looked-up object, or `nullptr` if the handle is not valid or its
* type differs from the handle type `T::HANDLE_TYPE`.
*/
template <class T>
SharedPtr<T> Get(Handle handle) const {
SharedPtr<Object> object = GetGeneric(handle);
if (object != nullptr && object->GetHandleType() == T::HANDLE_TYPE) {
return boost::static_pointer_cast<T>(std::move(object));
}
return nullptr;
}
/**
* Looks up a handle while verifying that it is an object that a thread can wait on
* @return Pointer to the looked-up object, or `nullptr` if the handle is not valid or it is
* not a waitable object.
*/
SharedPtr<WaitObject> GetWaitObject(Handle handle) const {
SharedPtr<Object> object = GetGeneric(handle);
if (object != nullptr && object->IsWaitable()) {
return boost::static_pointer_cast<WaitObject>(std::move(object));
}
return nullptr;
}
/// Closes all handles held in this table.
void Clear();
private:
/**
* This is the maximum limit of handles allowed per process in CTR-OS. It can be further
* reduced by ExHeader values, but this is not emulated here.
*/
static const size_t MAX_COUNT = 4096;
static u16 GetSlot(Handle handle) {
return handle >> 15;
}
static u16 GetGeneration(Handle handle) {
return handle & 0x7FFF;
}
/// Stores the Object referenced by the handle or null if the slot is empty.
std::array<SharedPtr<Object>, MAX_COUNT> objects;
/**
* The value of `next_generation` when the handle was created, used to check for validity. For
* empty slots, contains the index of the next free slot in the list.
*/
std::array<u16, MAX_COUNT> generations;
/**
* Global counter of the number of created handles. Stored in `generations` when a handle is
* created, and wraps around to 1 when it hits 0x8000.
*/
u16 next_generation;
/// Head of the free slots linked list.
u16 next_free_slot;
};
extern HandleTable g_handle_table;
/// Initialize the kernel with the specified system mode.
void Init(u32 system_mode);
/// Shutdown the kernel
void Shutdown();
} // namespace
|