summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/process.cpp
blob: 9e145866f9657456897efe3f9a1c171f9371605a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <memory>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/logging/log.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/memory.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/vm_manager.h"
#include "core/memory.h"

namespace Kernel {

SharedPtr<CodeSet> CodeSet::Create(std::string name, u64 program_id) {
    SharedPtr<CodeSet> codeset(new CodeSet);

    codeset->name = std::move(name);
    codeset->program_id = program_id;

    return codeset;
}

CodeSet::CodeSet() {}
CodeSet::~CodeSet() {}

u32 Process::next_process_id;

SharedPtr<Process> Process::Create(std::string&& name) {
    SharedPtr<Process> process(new Process);

    process->name = std::move(name);
    process->flags.raw = 0;
    process->flags.memory_region.Assign(MemoryRegion::APPLICATION);

    return process;
}

void Process::ParseKernelCaps(const u32* kernel_caps, size_t len) {
    for (size_t i = 0; i < len; ++i) {
        u32 descriptor = kernel_caps[i];
        u32 type = descriptor >> 20;

        if (descriptor == 0xFFFFFFFF) {
            // Unused descriptor entry
            continue;
        } else if ((type & 0xF00) == 0xE00) { // 0x0FFF
            // Allowed interrupts list
            LOG_WARNING(Loader, "ExHeader allowed interrupts list ignored");
        } else if ((type & 0xF80) == 0xF00) { // 0x07FF
            // Allowed syscalls mask
            unsigned int index = ((descriptor >> 24) & 7) * 24;
            u32 bits = descriptor & 0xFFFFFF;

            while (bits && index < svc_access_mask.size()) {
                svc_access_mask.set(index, bits & 1);
                ++index;
                bits >>= 1;
            }
        } else if ((type & 0xFF0) == 0xFE0) { // 0x00FF
            // Handle table size
            handle_table_size = descriptor & 0x3FF;
        } else if ((type & 0xFF8) == 0xFF0) { // 0x007F
            // Misc. flags
            flags.raw = descriptor & 0xFFFF;
        } else if ((type & 0xFFE) == 0xFF8) { // 0x001F
            // Mapped memory range
            if (i + 1 >= len || ((kernel_caps[i + 1] >> 20) & 0xFFE) != 0xFF8) {
                LOG_WARNING(Loader, "Incomplete exheader memory range descriptor ignored.");
                continue;
            }
            u32 end_desc = kernel_caps[i + 1];
            ++i; // Skip over the second descriptor on the next iteration

            AddressMapping mapping;
            mapping.address = descriptor << 12;
            VAddr end_address = end_desc << 12;

            if (mapping.address < end_address) {
                mapping.size = end_address - mapping.address;
            } else {
                mapping.size = 0;
            }

            mapping.read_only = (descriptor & (1 << 20)) != 0;
            mapping.unk_flag = (end_desc & (1 << 20)) != 0;

            address_mappings.push_back(mapping);
        } else if ((type & 0xFFF) == 0xFFE) { // 0x000F
            // Mapped memory page
            AddressMapping mapping;
            mapping.address = descriptor << 12;
            mapping.size = Memory::PAGE_SIZE;
            mapping.read_only = false;
            mapping.unk_flag = false;

            address_mappings.push_back(mapping);
        } else if ((type & 0xFE0) == 0xFC0) { // 0x01FF
            // Kernel version
            kernel_version = descriptor & 0xFFFF;

            int minor = kernel_version & 0xFF;
            int major = (kernel_version >> 8) & 0xFF;
            LOG_INFO(Loader, "ExHeader kernel version: %d.%d", major, minor);
        } else {
            LOG_ERROR(Loader, "Unhandled kernel caps descriptor: 0x%08X", descriptor);
        }
    }
}

void Process::Run(VAddr entry_point, s32 main_thread_priority, u32 stack_size) {
    // Allocate and map stack
    vm_manager
        .MapMemoryBlock(Memory::HEAP_VADDR_END - stack_size,
                        std::make_shared<std::vector<u8>>(stack_size, 0), 0, stack_size,
                        MemoryState::Locked)
        .Unwrap();
    misc_memory_used += stack_size;
    memory_region->used += stack_size;

    // Map special address mappings
    MapSharedPages(vm_manager);
    for (const auto& mapping : address_mappings) {
        HandleSpecialMapping(vm_manager, mapping);
    }

    vm_manager.LogLayout(Log::Level::Debug);

    Kernel::SetupMainThread(entry_point, main_thread_priority, this);
}

void Process::LoadModule(SharedPtr<CodeSet> module_, VAddr base_addr) {
    memory_region = GetMemoryRegion(flags.memory_region);

    auto MapSegment = [&](CodeSet::Segment& segment, VMAPermission permissions,
        MemoryState memory_state) {
        auto vma = vm_manager
            .MapMemoryBlock(segment.addr + base_addr, module_->memory, segment.offset, segment.size,
                memory_state)
            .Unwrap();
        vm_manager.Reprotect(vma, permissions);
        misc_memory_used += segment.size;
        memory_region->used += segment.size;
    };

    // Map CodeSet segments
    MapSegment(module_->code, VMAPermission::ReadWrite, MemoryState::Private);
    MapSegment(module_->rodata, VMAPermission::Read, MemoryState::Static);
    MapSegment(module_->data, VMAPermission::ReadWrite, MemoryState::Static);
}

VAddr Process::GetLinearHeapAreaAddress() const {
    // Starting from system version 8.0.0 a new linear heap layout is supported to allow usage of
    // the extra RAM in the n3DS.
    return kernel_version < 0x22C ? Memory::LINEAR_HEAP_VADDR : Memory::NEW_LINEAR_HEAP_VADDR;
}

VAddr Process::GetLinearHeapBase() const {
    return GetLinearHeapAreaAddress() + memory_region->base;
}

VAddr Process::GetLinearHeapLimit() const {
    return GetLinearHeapBase() + memory_region->size;
}

ResultVal<VAddr> Process::HeapAllocate(VAddr target, u32 size, VMAPermission perms) {
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
        target + size < target) {
        return ERR_INVALID_ADDRESS;
    }

    if (heap_memory == nullptr) {
        // Initialize heap
        heap_memory = std::make_shared<std::vector<u8>>();
        heap_start = heap_end = target;
    }

    // If necessary, expand backing vector to cover new heap extents.
    if (target < heap_start) {
        heap_memory->insert(begin(*heap_memory), heap_start - target, 0);
        heap_start = target;
        vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
    }
    if (target + size > heap_end) {
        heap_memory->insert(end(*heap_memory), (target + size) - heap_end, 0);
        heap_end = target + size;
        vm_manager.RefreshMemoryBlockMappings(heap_memory.get());
    }
    ASSERT(heap_end - heap_start == heap_memory->size());

    CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, heap_memory, target - heap_start,
                                                       size, MemoryState::Private));
    vm_manager.Reprotect(vma, perms);

    heap_used += size;
    memory_region->used += size;

    return MakeResult<VAddr>(heap_end - size);
}

ResultCode Process::HeapFree(VAddr target, u32 size) {
    if (target < Memory::HEAP_VADDR || target + size > Memory::HEAP_VADDR_END ||
        target + size < target) {
        return ERR_INVALID_ADDRESS;
    }

    if (size == 0) {
        return RESULT_SUCCESS;
    }

    ResultCode result = vm_manager.UnmapRange(target, size);
    if (result.IsError())
        return result;

    heap_used -= size;
    memory_region->used -= size;

    return RESULT_SUCCESS;
}

ResultVal<VAddr> Process::LinearAllocate(VAddr target, u32 size, VMAPermission perms) {
    auto& linheap_memory = memory_region->linear_heap_memory;

    VAddr heap_end = GetLinearHeapBase() + (u32)linheap_memory->size();
    // Games and homebrew only ever seem to pass 0 here (which lets the kernel decide the address),
    // but explicit addresses are also accepted and respected.
    if (target == 0) {
        target = heap_end;
    }

    if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() || target > heap_end ||
        target + size < target) {

        return ERR_INVALID_ADDRESS;
    }

    // Expansion of the linear heap is only allowed if you do an allocation immediately at its
    // end. It's possible to free gaps in the middle of the heap and then reallocate them later,
    // but expansions are only allowed at the end.
    if (target == heap_end) {
        linheap_memory->insert(linheap_memory->end(), size, 0);
        vm_manager.RefreshMemoryBlockMappings(linheap_memory.get());
    }

    // TODO(yuriks): As is, this lets processes map memory allocated by other processes from the
    // same region. It is unknown if or how the 3DS kernel checks against this.
    size_t offset = target - GetLinearHeapBase();
    CASCADE_RESULT(auto vma, vm_manager.MapMemoryBlock(target, linheap_memory, offset, size,
                                                       MemoryState::Continuous));
    vm_manager.Reprotect(vma, perms);

    linear_heap_used += size;
    memory_region->used += size;

    return MakeResult<VAddr>(target);
}

ResultCode Process::LinearFree(VAddr target, u32 size) {
    auto& linheap_memory = memory_region->linear_heap_memory;

    if (target < GetLinearHeapBase() || target + size > GetLinearHeapLimit() ||
        target + size < target) {

        return ERR_INVALID_ADDRESS;
    }

    if (size == 0) {
        return RESULT_SUCCESS;
    }

    VAddr heap_end = GetLinearHeapBase() + (u32)linheap_memory->size();
    if (target + size > heap_end) {
        return ERR_INVALID_ADDRESS_STATE;
    }

    ResultCode result = vm_manager.UnmapRange(target, size);
    if (result.IsError())
        return result;

    linear_heap_used -= size;
    memory_region->used -= size;

    if (target + size == heap_end) {
        // End of linear heap has been freed, so check what's the last allocated block in it and
        // reduce the size.
        auto vma = vm_manager.FindVMA(target);
        ASSERT(vma != vm_manager.vma_map.end());
        ASSERT(vma->second.type == VMAType::Free);
        VAddr new_end = vma->second.base;
        if (new_end >= GetLinearHeapBase()) {
            linheap_memory->resize(new_end - GetLinearHeapBase());
        }
    }

    return RESULT_SUCCESS;
}

Kernel::Process::Process() {}
Kernel::Process::~Process() {}

SharedPtr<Process> g_current_process;
}