1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <map>
#include "common/common.h"
#include "core/mem_map.h"
#include "core/hw/hw.h"
#include "hle/config_mem.h"
namespace Memory {
static std::map<u32, MemoryBlock> heap_map;
static std::map<u32, MemoryBlock> heap_linear_map;
static std::map<u32, MemoryBlock> shared_map;
/// Convert a physical address to virtual address
VAddr PhysicalToVirtualAddress(const PAddr addr) {
// Our memory interface read/write functions assume virtual addresses. Put any physical address
// to virtual address translations here. This is quite hacky, but necessary until we implement
// proper MMU emulation.
// TODO: Screw it, I'll let bunnei figure out how to do this properly.
if ((addr >= VRAM_PADDR) && (addr < VRAM_PADDR_END)) {
return addr - VRAM_PADDR + VRAM_VADDR;
}else if ((addr >= FCRAM_PADDR) && (addr < FCRAM_PADDR_END)) {
return addr - FCRAM_PADDR + FCRAM_VADDR;
}
LOG_ERROR(HW_Memory, "Unknown physical address @ 0x%08x", addr);
return addr;
}
/// Convert a physical address to virtual address
PAddr VirtualToPhysicalAddress(const VAddr addr) {
// Our memory interface read/write functions assume virtual addresses. Put any physical address
// to virtual address translations here. This is quite hacky, but necessary until we implement
// proper MMU emulation.
// TODO: Screw it, I'll let bunnei figure out how to do this properly.
if ((addr >= VRAM_VADDR) && (addr < VRAM_VADDR_END)) {
return addr - 0x07000000;
} else if ((addr >= FCRAM_VADDR) && (addr < FCRAM_VADDR_END)) {
return addr - FCRAM_VADDR + FCRAM_PADDR;
}
LOG_ERROR(HW_Memory, "Unknown virtual address @ 0x%08x", addr);
return addr;
}
template <typename T>
inline void Read(T &var, const VAddr vaddr) {
// TODO: Figure out the fastest order of tests for both read and write (they are probably different).
// TODO: Make sure this represents the mirrors in a correct way.
// Could just do a base-relative read, too.... TODO
// Kernel memory command buffer
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
var = *((const T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR]);
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
var = *((const T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR]);
// FCRAM - linear heap
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
var = *((const T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR]);
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
var = *((const T*)&g_heap[vaddr - HEAP_VADDR]);
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
var = *((const T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR]);
// System memory
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
var = *((const T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR]);
// Config memory
} else if ((vaddr >= CONFIG_MEMORY_VADDR) && (vaddr < CONFIG_MEMORY_VADDR_END)) {
ConfigMem::Read<T>(var, vaddr);
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
var = *((const T*)&g_vram[vaddr - VRAM_VADDR]);
} else {
LOG_ERROR(HW_Memory, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, vaddr);
}
}
template <typename T>
inline void Write(const VAddr vaddr, const T data) {
// Kernel memory command buffer
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
*(T*)&g_kernel_mem[vaddr - KERNEL_MEMORY_VADDR] = data;
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
*(T*)&g_exefs_code[vaddr - EXEFS_CODE_VADDR] = data;
// FCRAM - linear heap
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
*(T*)&g_heap_linear[vaddr - HEAP_LINEAR_VADDR] = data;
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
*(T*)&g_heap[vaddr - HEAP_VADDR] = data;
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
*(T*)&g_shared_mem[vaddr - SHARED_MEMORY_VADDR] = data;
// System memory
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
*(T*)&g_system_mem[vaddr - SYSTEM_MEMORY_VADDR] = data;
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
*(T*)&g_vram[vaddr - VRAM_VADDR] = data;
//} else if ((vaddr & 0xFFF00000) == 0x1FF00000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to DSP memory");
//} else if ((vaddr & 0xFFFF0000) == 0x1FF80000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to Configuration Memory");
//} else if ((vaddr & 0xFFFFF000) == 0x1FF81000) {
// _assert_msg_(MEMMAP, false, "umimplemented write to shared page");
// Error out...
} else {
LOG_ERROR(HW_Memory, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, vaddr);
}
}
u8 *GetPointer(const VAddr vaddr) {
// Kernel memory command buffer
if (vaddr >= KERNEL_MEMORY_VADDR && vaddr < KERNEL_MEMORY_VADDR_END) {
return g_kernel_mem + (vaddr - KERNEL_MEMORY_VADDR);
// ExeFS:/.code is loaded here
} else if ((vaddr >= EXEFS_CODE_VADDR) && (vaddr < EXEFS_CODE_VADDR_END)) {
return g_exefs_code + (vaddr - EXEFS_CODE_VADDR);
// FCRAM - linear heap
} else if ((vaddr >= HEAP_LINEAR_VADDR) && (vaddr < HEAP_LINEAR_VADDR_END)) {
return g_heap_linear + (vaddr - HEAP_LINEAR_VADDR);
// FCRAM - application heap
} else if ((vaddr >= HEAP_VADDR) && (vaddr < HEAP_VADDR_END)) {
return g_heap + (vaddr - HEAP_VADDR);
// Shared memory
} else if ((vaddr >= SHARED_MEMORY_VADDR) && (vaddr < SHARED_MEMORY_VADDR_END)) {
return g_shared_mem + (vaddr - SHARED_MEMORY_VADDR);
// System memory
} else if ((vaddr >= SYSTEM_MEMORY_VADDR) && (vaddr < SYSTEM_MEMORY_VADDR_END)) {
return g_system_mem + (vaddr - SYSTEM_MEMORY_VADDR);
// VRAM
} else if ((vaddr >= VRAM_VADDR) && (vaddr < VRAM_VADDR_END)) {
return g_vram + (vaddr - VRAM_VADDR);
} else {
LOG_ERROR(HW_Memory, "unknown GetPointer @ 0x%08x", vaddr);
return 0;
}
}
/**
* Maps a block of memory on the heap
* @param size Size of block in bytes
* @param operation Memory map operation type
* @param flags Memory allocation flags
*/
u32 MapBlock_Heap(u32 size, u32 operation, u32 permissions) {
MemoryBlock block;
block.base_address = HEAP_VADDR;
block.size = size;
block.operation = operation;
block.permissions = permissions;
if (heap_map.size() > 0) {
const MemoryBlock last_block = heap_map.rbegin()->second;
block.address = last_block.address + last_block.size;
}
heap_map[block.GetVirtualAddress()] = block;
return block.GetVirtualAddress();
}
/**
* Maps a block of memory on the linear heap
* @param size Size of block in bytes
* @param operation Memory map operation type
* @param flags Memory allocation flags
*/
u32 MapBlock_HeapLinear(u32 size, u32 operation, u32 permissions) {
MemoryBlock block;
block.base_address = HEAP_LINEAR_VADDR;
block.size = size;
block.operation = operation;
block.permissions = permissions;
if (heap_linear_map.size() > 0) {
const MemoryBlock last_block = heap_linear_map.rbegin()->second;
block.address = last_block.address + last_block.size;
}
heap_linear_map[block.GetVirtualAddress()] = block;
return block.GetVirtualAddress();
}
u8 Read8(const VAddr addr) {
u8 data = 0;
Read<u8>(data, addr);
return data;
}
u16 Read16(const VAddr addr) {
u16_le data = 0;
Read<u16_le>(data, addr);
// Check for 16-bit unaligned memory reads...
if (addr & 1) {
// TODO(bunnei): Implement 16-bit unaligned memory reads
LOG_ERROR(HW_Memory, "16-bit unaligned memory reads are not implemented!");
}
return (u16)data;
}
u32 Read32(const VAddr addr) {
u32_le data = 0;
Read<u32_le>(data, addr);
// Check for 32-bit unaligned memory reads...
if (addr & 3) {
// ARM allows for unaligned memory reads, however older ARM architectures read out memory
// from unaligned addresses in a shifted way. Our ARM CPU core (SkyEye) corrects for this,
// so therefore expects the memory to be read out in this manner.
// TODO(bunnei): Determine if this is necessary - perhaps it is OK to remove this from both
// SkyEye and here?
int shift = (addr & 3) * 8;
data = (data << shift) | (data >> (32 - shift));
}
return (u32)data;
}
u32 Read8_ZX(const VAddr addr) {
return (u32)Read8(addr);
}
u32 Read16_ZX(const VAddr addr) {
return (u32)Read16(addr);
}
void Write8(const VAddr addr, const u8 data) {
Write<u8>(addr, data);
}
void Write16(const VAddr addr, const u16 data) {
Write<u16_le>(addr, data);
}
void Write32(const VAddr addr, const u32 data) {
Write<u32_le>(addr, data);
}
void Write64(const VAddr addr, const u64 data) {
Write<u64_le>(addr, data);
}
void WriteBlock(const VAddr addr, const u8* data, const size_t size) {
u32 offset = 0;
while (offset < (size & ~3)) {
Write32(addr + offset, *(u32*)&data[offset]);
offset += 4;
}
if (size & 2) {
Write16(addr + offset, *(u16*)&data[offset]);
offset += 2;
}
if (size & 1)
Write8(addr + offset, data[offset]);
}
} // namespace
|