summaryrefslogtreecommitdiffstats
path: root/src/tests/core/core_timing.cpp
blob: 467eb4736a0e750680697374c770fa7633b96adf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <catch2/catch.hpp>

#include <array>
#include <bitset>
#include <cstdlib>
#include <string>
#include "common/file_util.h"
#include "core/core.h"
#include "core/core_timing.h"

// Numbers are chosen randomly to make sure the correct one is given.
static constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
static constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals

static std::bitset<CB_IDS.size()> callbacks_ran_flags;
static u64 expected_callback = 0;
static s64 lateness = 0;

template <unsigned int IDX>
void CallbackTemplate(u64 userdata, s64 cycles_late) {
    static_assert(IDX < CB_IDS.size(), "IDX out of range");
    callbacks_ran_flags.set(IDX);
    REQUIRE(CB_IDS[IDX] == userdata);
    REQUIRE(CB_IDS[IDX] == expected_callback);
    REQUIRE(lateness == cycles_late);
}

static u64 callbacks_done = 0;

void EmptyCallback(u64 userdata, s64 cycles_late) {
    ++callbacks_done;
}

struct ScopeInit final {
    ScopeInit() {
        core_timing.Initialize();
    }
    ~ScopeInit() {
        core_timing.Shutdown();
    }

    Core::Timing::CoreTiming core_timing;
};

static void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
                            int expected_lateness = 0, int cpu_downcount = 0) {
    callbacks_ran_flags = 0;
    expected_callback = CB_IDS[idx];
    lateness = expected_lateness;

    // Pretend we executed X cycles of instructions.
    core_timing.SwitchContext(context);
    core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
    core_timing.Advance();
    core_timing.SwitchContext((context + 1) % 4);

    REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
}

TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;

    Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
    Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
    Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
    Core::Timing::EventType* cb_d = core_timing.RegisterEvent("callbackD", CallbackTemplate<3>);
    Core::Timing::EventType* cb_e = core_timing.RegisterEvent("callbackE", CallbackTemplate<4>);

    // Enter slice 0
    core_timing.ResetRun();

    // D -> B -> C -> A -> E
    core_timing.SwitchContext(0);
    core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
    REQUIRE(1000 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
    REQUIRE(500 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
    REQUIRE(500 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
    REQUIRE(100 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
    REQUIRE(100 == core_timing.GetDowncount());

    AdvanceAndCheck(core_timing, 3, 0);
    AdvanceAndCheck(core_timing, 1, 1);
    AdvanceAndCheck(core_timing, 2, 2);
    AdvanceAndCheck(core_timing, 0, 3);
    AdvanceAndCheck(core_timing, 4, 0);
}

TEST_CASE("CoreTiming[FairSharing]", "[core]") {

    ScopeInit guard;
    auto& core_timing = guard.core_timing;

    Core::Timing::EventType* empty_callback =
        core_timing.RegisterEvent("empty_callback", EmptyCallback);

    callbacks_done = 0;
    u64 MAX_CALLBACKS = 10;
    for (std::size_t i = 0; i < 10; i++) {
        core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
    }

    const s64 advances = MAX_SLICE_LENGTH / 10;
    core_timing.ResetRun();
    u64 current_time = core_timing.GetTicks();
    bool keep_running{};
    do {
        keep_running = false;
        for (u32 active_core = 0; active_core < 4; ++active_core) {
            core_timing.SwitchContext(active_core);
            if (core_timing.CurrentContextCanRun()) {
                core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
                core_timing.Advance();
            }
            keep_running |= core_timing.CurrentContextCanRun();
        }
    } while (keep_running);
    u64 current_time_2 = core_timing.GetTicks();

    REQUIRE(MAX_CALLBACKS == callbacks_done);
    REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
}

TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;

    Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
    Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);

    // Enter slice 0
    core_timing.ResetRun();

    core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
    core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);

    AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
    AdvanceAndCheck(core_timing, 1, 1, 50, -50);
}

namespace ChainSchedulingTest {
static int reschedules = 0;

static void RescheduleCallback(Core::Timing::CoreTiming& core_timing, u64 userdata,
                               s64 cycles_late) {
    --reschedules;
    REQUIRE(reschedules >= 0);
    REQUIRE(lateness == cycles_late);

    if (reschedules > 0) {
        core_timing.ScheduleEvent(1000, reinterpret_cast<Core::Timing::EventType*>(userdata),
                                  userdata);
    }
}
} // namespace ChainSchedulingTest

TEST_CASE("CoreTiming[ChainScheduling]", "[core]") {
    using namespace ChainSchedulingTest;

    ScopeInit guard;
    auto& core_timing = guard.core_timing;

    Core::Timing::EventType* cb_a = core_timing.RegisterEvent("callbackA", CallbackTemplate<0>);
    Core::Timing::EventType* cb_b = core_timing.RegisterEvent("callbackB", CallbackTemplate<1>);
    Core::Timing::EventType* cb_c = core_timing.RegisterEvent("callbackC", CallbackTemplate<2>);
    Core::Timing::EventType* cb_rs = core_timing.RegisterEvent(
        "callbackReschedule", [&core_timing](u64 userdata, s64 cycles_late) {
            RescheduleCallback(core_timing, userdata, cycles_late);
        });

    // Enter slice 0
    core_timing.ResetRun();

    core_timing.ScheduleEvent(800, cb_a, CB_IDS[0]);
    core_timing.ScheduleEvent(1000, cb_b, CB_IDS[1]);
    core_timing.ScheduleEvent(2200, cb_c, CB_IDS[2]);
    core_timing.ScheduleEvent(1000, cb_rs, reinterpret_cast<u64>(cb_rs));
    REQUIRE(800 == core_timing.GetDowncount());

    reschedules = 3;
    AdvanceAndCheck(core_timing, 0, 0); // cb_a
    AdvanceAndCheck(core_timing, 1, 1); // cb_b, cb_rs
    REQUIRE(2 == reschedules);

    core_timing.AddTicks(core_timing.GetDowncount());
    core_timing.Advance(); // cb_rs
    core_timing.SwitchContext(3);
    REQUIRE(1 == reschedules);
    REQUIRE(200 == core_timing.GetDowncount());

    AdvanceAndCheck(core_timing, 2, 3); // cb_c

    core_timing.AddTicks(core_timing.GetDowncount());
    core_timing.Advance(); // cb_rs
    REQUIRE(0 == reschedules);
}