1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
|
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <algorithm>
#include <cstring>
#include <memory>
#include <queue>
#include "common/common_types.h"
#include "video_core/delayed_destruction_ring.h"
#include "video_core/gpu.h"
#include "video_core/host1x/host1x.h"
#include "video_core/host1x/syncpoint_manager.h"
#include "video_core/rasterizer_interface.h"
namespace VideoCommon {
class FenceBase {
public:
explicit FenceBase(u32 payload_, bool is_stubbed_)
: address{}, payload{payload_}, is_semaphore{false}, is_stubbed{is_stubbed_} {}
explicit FenceBase(u8* address_, u32 payload_, bool is_stubbed_)
: address{address_}, payload{payload_}, is_semaphore{true}, is_stubbed{is_stubbed_} {}
u8* GetAddress() const {
return address;
}
u32 GetPayload() const {
return payload;
}
bool IsSemaphore() const {
return is_semaphore;
}
private:
u8* address;
u32 payload;
bool is_semaphore;
protected:
bool is_stubbed;
};
template <typename TFence, typename TTextureCache, typename TTBufferCache, typename TQueryCache>
class FenceManager {
public:
/// Notify the fence manager about a new frame
void TickFrame() {
delayed_destruction_ring.Tick();
}
// Unlike other fences, this one doesn't
void SignalOrdering() {
std::scoped_lock lock{buffer_cache.mutex};
buffer_cache.AccumulateFlushes();
}
void SignalSemaphore(u8* addr, u32 value) {
TryReleasePendingFences();
const bool should_flush = ShouldFlush();
CommitAsyncFlushes();
TFence new_fence = CreateFence(addr, value, !should_flush);
fences.push(new_fence);
QueueFence(new_fence);
if (should_flush) {
rasterizer.FlushCommands();
}
rasterizer.SyncGuestHost();
}
void SignalSyncPoint(u32 value) {
syncpoint_manager.IncrementGuest(value);
TryReleasePendingFences();
const bool should_flush = ShouldFlush();
CommitAsyncFlushes();
TFence new_fence = CreateFence(value, !should_flush);
fences.push(new_fence);
QueueFence(new_fence);
if (should_flush) {
rasterizer.FlushCommands();
}
rasterizer.SyncGuestHost();
}
void WaitPendingFences() {
while (!fences.empty()) {
TFence& current_fence = fences.front();
if (ShouldWait()) {
WaitFence(current_fence);
}
PopAsyncFlushes();
if (current_fence->IsSemaphore()) {
char* address = reinterpret_cast<char*>(current_fence->GetAddress());
auto payload = current_fence->GetPayload();
std::memcpy(address, &payload, sizeof(payload));
} else {
syncpoint_manager.IncrementHost(current_fence->GetPayload());
}
PopFence();
}
}
protected:
explicit FenceManager(VideoCore::RasterizerInterface& rasterizer_, Tegra::GPU& gpu_,
TTextureCache& texture_cache_, TTBufferCache& buffer_cache_,
TQueryCache& query_cache_)
: rasterizer{rasterizer_}, gpu{gpu_}, syncpoint_manager{gpu.Host1x().GetSyncpointManager()},
texture_cache{texture_cache_}, buffer_cache{buffer_cache_}, query_cache{query_cache_} {}
virtual ~FenceManager() = default;
/// Creates a Sync Point Fence Interface, does not create a backend fence if 'is_stubbed' is
/// true
virtual TFence CreateFence(u32 value, bool is_stubbed) = 0;
/// Creates a Semaphore Fence Interface, does not create a backend fence if 'is_stubbed' is true
virtual TFence CreateFence(u8* addr, u32 value, bool is_stubbed) = 0;
/// Queues a fence into the backend if the fence isn't stubbed.
virtual void QueueFence(TFence& fence) = 0;
/// Notifies that the backend fence has been signaled/reached in host GPU.
virtual bool IsFenceSignaled(TFence& fence) const = 0;
/// Waits until a fence has been signalled by the host GPU.
virtual void WaitFence(TFence& fence) = 0;
VideoCore::RasterizerInterface& rasterizer;
Tegra::GPU& gpu;
Tegra::Host1x::SyncpointManager& syncpoint_manager;
TTextureCache& texture_cache;
TTBufferCache& buffer_cache;
TQueryCache& query_cache;
private:
void TryReleasePendingFences() {
while (!fences.empty()) {
TFence& current_fence = fences.front();
if (ShouldWait() && !IsFenceSignaled(current_fence)) {
return;
}
PopAsyncFlushes();
if (current_fence->IsSemaphore()) {
char* address = reinterpret_cast<char*>(current_fence->GetAddress());
const auto payload = current_fence->GetPayload();
std::memcpy(address, &payload, sizeof(payload));
} else {
syncpoint_manager.IncrementHost(current_fence->GetPayload());
}
PopFence();
}
}
bool ShouldWait() const {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
return texture_cache.ShouldWaitAsyncFlushes() || buffer_cache.ShouldWaitAsyncFlushes() ||
query_cache.ShouldWaitAsyncFlushes();
}
bool ShouldFlush() const {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
return texture_cache.HasUncommittedFlushes() || buffer_cache.HasUncommittedFlushes() ||
query_cache.HasUncommittedFlushes();
}
void PopAsyncFlushes() {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.PopAsyncFlushes();
buffer_cache.PopAsyncFlushes();
query_cache.PopAsyncFlushes();
}
void CommitAsyncFlushes() {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
texture_cache.CommitAsyncFlushes();
buffer_cache.CommitAsyncFlushes();
query_cache.CommitAsyncFlushes();
}
void PopFence() {
delayed_destruction_ring.Push(std::move(fences.front()));
fences.pop();
}
std::queue<TFence> fences;
DelayedDestructionRing<TFence, 6> delayed_destruction_ring;
};
} // namespace VideoCommon
|