summaryrefslogtreecommitdiffstats
path: root/src/video_core/pica.h
blob: 50a549c4249b2fa97e53243c3b45e371b66fd656 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#pragma once

#include <array>
#include <cstddef>
#include <string>

#ifndef _MSC_VER
#include <type_traits> // for std::enable_if
#endif

#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/vector_math.h"
#include "video_core/regs_framebuffer.h"
#include "video_core/regs_rasterizer.h"
#include "video_core/regs_texturing.h"

namespace Pica {

// Returns index corresponding to the Regs member labeled by field_name
// TODO: Due to Visual studio bug 209229, offsetof does not return constant expressions
//       when used with array elements (e.g. PICA_REG_INDEX(vs_uniform_setup.set_value[1])).
//       For details cf.
//       https://connect.microsoft.com/VisualStudio/feedback/details/209229/offsetof-does-not-produce-a-constant-expression-for-array-members
//       Hopefully, this will be fixed sometime in the future.
//       For lack of better alternatives, we currently hardcode the offsets when constant
//       expressions are needed via PICA_REG_INDEX_WORKAROUND (on sane compilers, static_asserts
//       will then make sure the offsets indeed match the automatically calculated ones).
#define PICA_REG_INDEX(field_name) (offsetof(Pica::Regs, field_name) / sizeof(u32))
#if defined(_MSC_VER)
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index) (backup_workaround_index)
#else
// NOTE: Yeah, hacking in a static_assert here just to workaround the lacking MSVC compiler
//       really is this annoying. This macro just forwards its first argument to PICA_REG_INDEX
//       and then performs a (no-op) cast to size_t iff the second argument matches the expected
//       field offset. Otherwise, the compiler will fail to compile this code.
#define PICA_REG_INDEX_WORKAROUND(field_name, backup_workaround_index)                             \
    ((typename std::enable_if<backup_workaround_index == PICA_REG_INDEX(field_name),               \
                              size_t>::type)PICA_REG_INDEX(field_name))
#endif // _MSC_VER

struct Regs {
    INSERT_PADDING_WORDS(0x10);
    u32 trigger_irq;
    INSERT_PADDING_WORDS(0x2f);
    RasterizerRegs rasterizer;
    TexturingRegs texturing;
    FramebufferRegs framebuffer;

    enum class LightingSampler {
        Distribution0 = 0,
        Distribution1 = 1,
        Fresnel = 3,
        ReflectBlue = 4,
        ReflectGreen = 5,
        ReflectRed = 6,
        SpotlightAttenuation = 8,
        DistanceAttenuation = 16,
    };

    /**
     * Pica fragment lighting supports using different LUTs for each lighting component:
     * Reflectance R, G, and B channels, distribution function for specular components 0 and 1,
     * fresnel factor, and spotlight attenuation. Furthermore, which LUTs are used for each channel
     * (or whether a channel is enabled at all) is specified by various pre-defined lighting
     * configurations. With configurations that require more LUTs, more cycles are required on HW to
     * perform lighting computations.
     */
    enum class LightingConfig {
        Config0 = 0, ///< Reflect Red, Distribution 0, Spotlight
        Config1 = 1, ///< Reflect Red, Fresnel, Spotlight
        Config2 = 2, ///< Reflect Red, Distribution 0/1
        Config3 = 3, ///< Distribution 0/1, Fresnel
        Config4 = 4, ///< Reflect Red/Green/Blue, Distribution 0/1, Spotlight
        Config5 = 5, ///< Reflect Red/Green/Blue, Distribution 0, Fresnel, Spotlight
        Config6 = 6, ///< Reflect Red, Distribution 0/1, Fresnel, Spotlight
        Config7 = 8, ///< Reflect Red/Green/Blue, Distribution 0/1, Fresnel, Spotlight
                     ///< NOTE: '8' is intentional, '7' does not appear to be a valid configuration
    };

    /// Selects which lighting components are affected by fresnel
    enum class LightingFresnelSelector {
        None = 0,           ///< Fresnel is disabled
        PrimaryAlpha = 1,   ///< Primary (diffuse) lighting alpha is affected by fresnel
        SecondaryAlpha = 2, ///< Secondary (specular) lighting alpha is affected by fresnel
        Both =
            PrimaryAlpha |
            SecondaryAlpha, ///< Both primary and secondary lighting alphas are affected by fresnel
    };

    /// Factor used to scale the output of a lighting LUT
    enum class LightingScale {
        Scale1 = 0,   ///< Scale is 1x
        Scale2 = 1,   ///< Scale is 2x
        Scale4 = 2,   ///< Scale is 4x
        Scale8 = 3,   ///< Scale is 8x
        Scale1_4 = 6, ///< Scale is 0.25x
        Scale1_2 = 7, ///< Scale is 0.5x
    };

    enum class LightingLutInput {
        NH = 0, // Cosine of the angle between the normal and half-angle vectors
        VH = 1, // Cosine of the angle between the view and half-angle vectors
        NV = 2, // Cosine of the angle between the normal and the view vector
        LN = 3, // Cosine of the angle between the light and the normal vectors
    };

    enum class LightingBumpMode : u32 {
        None = 0,
        NormalMap = 1,
        TangentMap = 2,
    };

    union LightColor {
        BitField<0, 10, u32> b;
        BitField<10, 10, u32> g;
        BitField<20, 10, u32> r;

        Math::Vec3f ToVec3f() const {
            // These fields are 10 bits wide, however 255 corresponds to 1.0f for each color
            // component
            return Math::MakeVec((f32)r / 255.f, (f32)g / 255.f, (f32)b / 255.f);
        }
    };

    /// Returns true if the specified lighting sampler is supported by the current Pica lighting
    /// configuration
    static bool IsLightingSamplerSupported(LightingConfig config, LightingSampler sampler) {
        switch (sampler) {
        case LightingSampler::Distribution0:
            return (config != LightingConfig::Config1);

        case LightingSampler::Distribution1:
            return (config != LightingConfig::Config0) && (config != LightingConfig::Config1) &&
                   (config != LightingConfig::Config5);

        case LightingSampler::Fresnel:
            return (config != LightingConfig::Config0) && (config != LightingConfig::Config2) &&
                   (config != LightingConfig::Config4);

        case LightingSampler::ReflectRed:
            return (config != LightingConfig::Config3);

        case LightingSampler::ReflectGreen:
        case LightingSampler::ReflectBlue:
            return (config == LightingConfig::Config4) || (config == LightingConfig::Config5) ||
                   (config == LightingConfig::Config7);
        default:
            UNREACHABLE_MSG("Regs::IsLightingSamplerSupported: Reached "
                            "unreachable section, sampler should be one "
                            "of Distribution0, Distribution1, Fresnel, "
                            "ReflectRed, ReflectGreen or ReflectBlue, instead "
                            "got %i",
                            static_cast<int>(config));
        }
    }

    struct {
        struct LightSrc {
            LightColor specular_0; // material.specular_0 * light.specular_0
            LightColor specular_1; // material.specular_1 * light.specular_1
            LightColor diffuse;    // material.diffuse * light.diffuse
            LightColor ambient;    // material.ambient * light.ambient

            // Encoded as 16-bit floating point
            union {
                BitField<0, 16, u32> x;
                BitField<16, 16, u32> y;
            };
            union {
                BitField<0, 16, u32> z;
            };

            INSERT_PADDING_WORDS(0x3);

            union {
                BitField<0, 1, u32> directional;
                BitField<1, 1, u32> two_sided_diffuse; // When disabled, clamp dot-product to 0
            } config;

            BitField<0, 20, u32> dist_atten_bias;
            BitField<0, 20, u32> dist_atten_scale;

            INSERT_PADDING_WORDS(0x4);
        };
        static_assert(sizeof(LightSrc) == 0x10 * sizeof(u32),
                      "LightSrc structure must be 0x10 words");

        LightSrc light[8];
        LightColor global_ambient; // Emission + (material.ambient * lighting.ambient)
        INSERT_PADDING_WORDS(0x1);
        BitField<0, 3, u32> max_light_index; // Number of enabled lights - 1

        union {
            BitField<2, 2, LightingFresnelSelector> fresnel_selector;
            BitField<4, 4, LightingConfig> config;
            BitField<22, 2, u32> bump_selector; // 0: Texture 0, 1: Texture 1, 2: Texture 2
            BitField<27, 1, u32> clamp_highlights;
            BitField<28, 2, LightingBumpMode> bump_mode;
            BitField<30, 1, u32> disable_bump_renorm;
        } config0;

        union {
            BitField<16, 1, u32> disable_lut_d0;
            BitField<17, 1, u32> disable_lut_d1;
            BitField<19, 1, u32> disable_lut_fr;
            BitField<20, 1, u32> disable_lut_rr;
            BitField<21, 1, u32> disable_lut_rg;
            BitField<22, 1, u32> disable_lut_rb;

            // Each bit specifies whether distance attenuation should be applied for the
            // corresponding light

            BitField<24, 1, u32> disable_dist_atten_light_0;
            BitField<25, 1, u32> disable_dist_atten_light_1;
            BitField<26, 1, u32> disable_dist_atten_light_2;
            BitField<27, 1, u32> disable_dist_atten_light_3;
            BitField<28, 1, u32> disable_dist_atten_light_4;
            BitField<29, 1, u32> disable_dist_atten_light_5;
            BitField<30, 1, u32> disable_dist_atten_light_6;
            BitField<31, 1, u32> disable_dist_atten_light_7;
        } config1;

        bool IsDistAttenDisabled(unsigned index) const {
            const unsigned disable[] = {
                config1.disable_dist_atten_light_0, config1.disable_dist_atten_light_1,
                config1.disable_dist_atten_light_2, config1.disable_dist_atten_light_3,
                config1.disable_dist_atten_light_4, config1.disable_dist_atten_light_5,
                config1.disable_dist_atten_light_6, config1.disable_dist_atten_light_7};
            return disable[index] != 0;
        }

        union {
            BitField<0, 8, u32> index; ///< Index at which to set data in the LUT
            BitField<8, 5, u32> type;  ///< Type of LUT for which to set data
        } lut_config;

        BitField<0, 1, u32> disable;
        INSERT_PADDING_WORDS(0x1);

        // When data is written to any of these registers, it gets written to the lookup table of
        // the selected type at the selected index, specified above in the `lut_config` register.
        // With each write, `lut_config.index` is incremented. It does not matter which of these
        // registers is written to, the behavior will be the same.
        u32 lut_data[8];

        // These are used to specify if absolute (abs) value should be used for each LUT index. When
        // abs mode is disabled, LUT indexes are in the range of (-1.0, 1.0). Otherwise, they are in
        // the range of (0.0, 1.0).
        union {
            BitField<1, 1, u32> disable_d0;
            BitField<5, 1, u32> disable_d1;
            BitField<9, 1, u32> disable_sp;
            BitField<13, 1, u32> disable_fr;
            BitField<17, 1, u32> disable_rb;
            BitField<21, 1, u32> disable_rg;
            BitField<25, 1, u32> disable_rr;
        } abs_lut_input;

        union {
            BitField<0, 3, LightingLutInput> d0;
            BitField<4, 3, LightingLutInput> d1;
            BitField<8, 3, LightingLutInput> sp;
            BitField<12, 3, LightingLutInput> fr;
            BitField<16, 3, LightingLutInput> rb;
            BitField<20, 3, LightingLutInput> rg;
            BitField<24, 3, LightingLutInput> rr;
        } lut_input;

        union {
            BitField<0, 3, LightingScale> d0;
            BitField<4, 3, LightingScale> d1;
            BitField<8, 3, LightingScale> sp;
            BitField<12, 3, LightingScale> fr;
            BitField<16, 3, LightingScale> rb;
            BitField<20, 3, LightingScale> rg;
            BitField<24, 3, LightingScale> rr;

            static float GetScale(LightingScale scale) {
                switch (scale) {
                case LightingScale::Scale1:
                    return 1.0f;
                case LightingScale::Scale2:
                    return 2.0f;
                case LightingScale::Scale4:
                    return 4.0f;
                case LightingScale::Scale8:
                    return 8.0f;
                case LightingScale::Scale1_4:
                    return 0.25f;
                case LightingScale::Scale1_2:
                    return 0.5f;
                }
                return 0.0f;
            }
        } lut_scale;

        INSERT_PADDING_WORDS(0x6);

        union {
            // There are 8 light enable "slots", corresponding to the total number of lights
            // supported by Pica. For N enabled lights (specified by register 0x1c2, or 'src_num'
            // above), the first N slots below will be set to integers within the range of 0-7,
            // corresponding to the actual light that is enabled for each slot.

            BitField<0, 3, u32> slot_0;
            BitField<4, 3, u32> slot_1;
            BitField<8, 3, u32> slot_2;
            BitField<12, 3, u32> slot_3;
            BitField<16, 3, u32> slot_4;
            BitField<20, 3, u32> slot_5;
            BitField<24, 3, u32> slot_6;
            BitField<28, 3, u32> slot_7;

            unsigned GetNum(unsigned index) const {
                const unsigned enable_slots[] = {slot_0, slot_1, slot_2, slot_3,
                                                 slot_4, slot_5, slot_6, slot_7};
                return enable_slots[index];
            }
        } light_enable;
    } lighting;

    INSERT_PADDING_WORDS(0x26);

    enum class VertexAttributeFormat : u64 {
        BYTE = 0,
        UBYTE = 1,
        SHORT = 2,
        FLOAT = 3,
    };

    struct {
        BitField<0, 29, u32> base_address;

        u32 GetPhysicalBaseAddress() const {
            return DecodeAddressRegister(base_address);
        }

        // Descriptor for internal vertex attributes
        union {
            BitField<0, 2, VertexAttributeFormat> format0; // size of one element
            BitField<2, 2, u64> size0;                     // number of elements minus 1
            BitField<4, 2, VertexAttributeFormat> format1;
            BitField<6, 2, u64> size1;
            BitField<8, 2, VertexAttributeFormat> format2;
            BitField<10, 2, u64> size2;
            BitField<12, 2, VertexAttributeFormat> format3;
            BitField<14, 2, u64> size3;
            BitField<16, 2, VertexAttributeFormat> format4;
            BitField<18, 2, u64> size4;
            BitField<20, 2, VertexAttributeFormat> format5;
            BitField<22, 2, u64> size5;
            BitField<24, 2, VertexAttributeFormat> format6;
            BitField<26, 2, u64> size6;
            BitField<28, 2, VertexAttributeFormat> format7;
            BitField<30, 2, u64> size7;
            BitField<32, 2, VertexAttributeFormat> format8;
            BitField<34, 2, u64> size8;
            BitField<36, 2, VertexAttributeFormat> format9;
            BitField<38, 2, u64> size9;
            BitField<40, 2, VertexAttributeFormat> format10;
            BitField<42, 2, u64> size10;
            BitField<44, 2, VertexAttributeFormat> format11;
            BitField<46, 2, u64> size11;

            BitField<48, 12, u64> attribute_mask;

            // number of total attributes minus 1
            BitField<60, 4, u64> max_attribute_index;
        };

        inline VertexAttributeFormat GetFormat(int n) const {
            VertexAttributeFormat formats[] = {format0, format1, format2,  format3,
                                               format4, format5, format6,  format7,
                                               format8, format9, format10, format11};
            return formats[n];
        }

        inline int GetNumElements(int n) const {
            u64 sizes[] = {size0, size1, size2, size3, size4,  size5,
                           size6, size7, size8, size9, size10, size11};
            return (int)sizes[n] + 1;
        }

        inline int GetElementSizeInBytes(int n) const {
            return (GetFormat(n) == VertexAttributeFormat::FLOAT)
                       ? 4
                       : (GetFormat(n) == VertexAttributeFormat::SHORT) ? 2 : 1;
        }

        inline int GetStride(int n) const {
            return GetNumElements(n) * GetElementSizeInBytes(n);
        }

        inline bool IsDefaultAttribute(int id) const {
            return (id >= 12) || (attribute_mask & (1ULL << id)) != 0;
        }

        inline int GetNumTotalAttributes() const {
            return (int)max_attribute_index + 1;
        }

        // Attribute loaders map the source vertex data to input attributes
        // This e.g. allows to load different attributes from different memory locations
        struct {
            // Source attribute data offset from the base address
            u32 data_offset;

            union {
                BitField<0, 4, u64> comp0;
                BitField<4, 4, u64> comp1;
                BitField<8, 4, u64> comp2;
                BitField<12, 4, u64> comp3;
                BitField<16, 4, u64> comp4;
                BitField<20, 4, u64> comp5;
                BitField<24, 4, u64> comp6;
                BitField<28, 4, u64> comp7;
                BitField<32, 4, u64> comp8;
                BitField<36, 4, u64> comp9;
                BitField<40, 4, u64> comp10;
                BitField<44, 4, u64> comp11;

                // bytes for a single vertex in this loader
                BitField<48, 8, u64> byte_count;

                BitField<60, 4, u64> component_count;
            };

            inline int GetComponent(int n) const {
                u64 components[] = {comp0, comp1, comp2, comp3, comp4,  comp5,
                                    comp6, comp7, comp8, comp9, comp10, comp11};
                return (int)components[n];
            }
        } attribute_loaders[12];
    } vertex_attributes;

    struct {
        enum IndexFormat : u32 {
            BYTE = 0,
            SHORT = 1,
        };

        union {
            BitField<0, 31, u32> offset; // relative to base attribute address
            BitField<31, 1, IndexFormat> format;
        };
    } index_array;

    // Number of vertices to render
    u32 num_vertices;

    INSERT_PADDING_WORDS(0x1);

    // The index of the first vertex to render
    u32 vertex_offset;

    INSERT_PADDING_WORDS(0x3);

    // These two trigger rendering of triangles
    u32 trigger_draw;
    u32 trigger_draw_indexed;

    INSERT_PADDING_WORDS(0x2);

    // These registers are used to setup the default "fall-back" vertex shader attributes
    struct {
        // Index of the current default attribute
        u32 index;

        // Writing to these registers sets the "current" default attribute.
        u32 set_value[3];
    } vs_default_attributes_setup;

    INSERT_PADDING_WORDS(0x2);

    struct {
        // There are two channels that can be used to configure the next command buffer, which
        // can be then executed by writing to the "trigger" registers. There are two reasons why a
        // game might use this feature:
        //  1) With this, an arbitrary number of additional command buffers may be executed in
        //     sequence without requiring any intervention of the CPU after the initial one is
        //     kicked off.
        //  2) Games can configure these registers to provide a command list subroutine mechanism.

        BitField<0, 20, u32> size[2]; ///< Size (in bytes / 8) of each channel's command buffer
        BitField<0, 28, u32> addr[2]; ///< Physical address / 8 of each channel's command buffer
        u32 trigger[2]; ///< Triggers execution of the channel's command buffer when written to

        unsigned GetSize(unsigned index) const {
            ASSERT(index < 2);
            return 8 * size[index];
        }

        PAddr GetPhysicalAddress(unsigned index) const {
            ASSERT(index < 2);
            return (PAddr)(8 * addr[index]);
        }
    } command_buffer;

    INSERT_PADDING_WORDS(4);

    /// Number of input attributes to the vertex shader minus 1
    BitField<0, 4, u32> max_input_attrib_index;

    INSERT_PADDING_WORDS(2);

    enum class GPUMode : u32 {
        Drawing = 0,
        Configuring = 1,
    };

    GPUMode gpu_mode;

    INSERT_PADDING_WORDS(0x18);

    enum class TriangleTopology : u32 {
        List = 0,
        Strip = 1,
        Fan = 2,
        Shader = 3, // Programmable setup unit implemented in a geometry shader
    };

    BitField<8, 2, TriangleTopology> triangle_topology;

    u32 restart_primitive;

    INSERT_PADDING_WORDS(0x20);

    struct ShaderConfig {
        BitField<0, 16, u32> bool_uniforms;

        union {
            BitField<0, 8, u32> x;
            BitField<8, 8, u32> y;
            BitField<16, 8, u32> z;
            BitField<24, 8, u32> w;
        } int_uniforms[4];

        INSERT_PADDING_WORDS(0x4);

        union {
            // Number of input attributes to shader unit - 1
            BitField<0, 4, u32> max_input_attribute_index;
        };

        // Offset to shader program entry point (in words)
        BitField<0, 16, u32> main_offset;

        /// Maps input attributes to registers. 4-bits per attribute, specifying a register index
        u32 input_attribute_to_register_map_low;
        u32 input_attribute_to_register_map_high;

        unsigned int GetRegisterForAttribute(unsigned int attribute_index) const {
            u64 map = ((u64)input_attribute_to_register_map_high << 32) |
                      (u64)input_attribute_to_register_map_low;
            return (map >> (attribute_index * 4)) & 0b1111;
        }

        BitField<0, 16, u32> output_mask;

        // 0x28E, CODETRANSFER_END
        INSERT_PADDING_WORDS(0x2);

        struct {
            enum Format : u32 {
                FLOAT24 = 0,
                FLOAT32 = 1,
            };

            bool IsFloat32() const {
                return format == FLOAT32;
            }

            union {
                // Index of the next uniform to write to
                // TODO: ctrulib uses 8 bits for this, however that seems to yield lots of invalid
                // indices
                // TODO: Maybe the uppermost index is for the geometry shader? Investigate!
                BitField<0, 7, u32> index;

                BitField<31, 1, Format> format;
            };

            // Writing to these registers sets the current uniform.
            u32 set_value[8];

        } uniform_setup;

        INSERT_PADDING_WORDS(0x2);

        struct {
            // Offset of the next instruction to write code to.
            // Incremented with each instruction write.
            u32 offset;

            // Writing to these registers sets the "current" word in the shader program.
            u32 set_word[8];
        } program;

        INSERT_PADDING_WORDS(0x1);

        // This register group is used to load an internal table of swizzling patterns,
        // which are indexed by each shader instruction to specify vector component swizzling.
        struct {
            // Offset of the next swizzle pattern to write code to.
            // Incremented with each instruction write.
            u32 offset;

            // Writing to these registers sets the current swizzle pattern in the table.
            u32 set_word[8];
        } swizzle_patterns;

        INSERT_PADDING_WORDS(0x2);
    };

    ShaderConfig gs;
    ShaderConfig vs;

    INSERT_PADDING_WORDS(0x20);

    // Map register indices to names readable by humans
    // Used for debugging purposes, so performance is not an issue here
    static std::string GetCommandName(int index);

    static constexpr size_t NumIds() {
        return sizeof(Regs) / sizeof(u32);
    }

    const u32& operator[](int index) const {
        const u32* content = reinterpret_cast<const u32*>(this);
        return content[index];
    }

    u32& operator[](int index) {
        u32* content = reinterpret_cast<u32*>(this);
        return content[index];
    }

private:
    /*
     * Most physical addresses which Pica registers refer to are 8-byte aligned.
     * This function should be used to get the address from a raw register value.
     */
    static inline u32 DecodeAddressRegister(u32 register_value) {
        return register_value * 8;
    }
};

// TODO: MSVC does not support using offsetof() on non-static data members even though this
//       is technically allowed since C++11. This macro should be enabled once MSVC adds
//       support for that.
#ifndef _MSC_VER
#define ASSERT_REG_POSITION(field_name, position)                                                  \
    static_assert(offsetof(Regs, field_name) == position * 4,                                      \
                  "Field " #field_name " has invalid position")

ASSERT_REG_POSITION(trigger_irq, 0x10);

ASSERT_REG_POSITION(rasterizer, 0x40);
ASSERT_REG_POSITION(rasterizer.cull_mode, 0x40);
ASSERT_REG_POSITION(rasterizer.viewport_size_x, 0x41);
ASSERT_REG_POSITION(rasterizer.viewport_size_y, 0x43);
ASSERT_REG_POSITION(rasterizer.viewport_depth_range, 0x4d);
ASSERT_REG_POSITION(rasterizer.viewport_depth_near_plane, 0x4e);
ASSERT_REG_POSITION(rasterizer.vs_output_attributes[0], 0x50);
ASSERT_REG_POSITION(rasterizer.vs_output_attributes[1], 0x51);
ASSERT_REG_POSITION(rasterizer.scissor_test, 0x65);
ASSERT_REG_POSITION(rasterizer.viewport_corner, 0x68);
ASSERT_REG_POSITION(rasterizer.depthmap_enable, 0x6D);

ASSERT_REG_POSITION(texturing, 0x80);
ASSERT_REG_POSITION(texturing.texture0_enable, 0x80);
ASSERT_REG_POSITION(texturing.texture0, 0x81);
ASSERT_REG_POSITION(texturing.texture0_format, 0x8e);
ASSERT_REG_POSITION(texturing.fragment_lighting_enable, 0x8f);
ASSERT_REG_POSITION(texturing.texture1, 0x91);
ASSERT_REG_POSITION(texturing.texture1_format, 0x96);
ASSERT_REG_POSITION(texturing.texture2, 0x99);
ASSERT_REG_POSITION(texturing.texture2_format, 0x9e);
ASSERT_REG_POSITION(texturing.tev_stage0, 0xc0);
ASSERT_REG_POSITION(texturing.tev_stage1, 0xc8);
ASSERT_REG_POSITION(texturing.tev_stage2, 0xd0);
ASSERT_REG_POSITION(texturing.tev_stage3, 0xd8);
ASSERT_REG_POSITION(texturing.tev_combiner_buffer_input, 0xe0);
ASSERT_REG_POSITION(texturing.fog_mode, 0xe0);
ASSERT_REG_POSITION(texturing.fog_color, 0xe1);
ASSERT_REG_POSITION(texturing.fog_lut_offset, 0xe6);
ASSERT_REG_POSITION(texturing.fog_lut_data, 0xe8);
ASSERT_REG_POSITION(texturing.tev_stage4, 0xf0);
ASSERT_REG_POSITION(texturing.tev_stage5, 0xf8);
ASSERT_REG_POSITION(texturing.tev_combiner_buffer_color, 0xfd);

ASSERT_REG_POSITION(framebuffer, 0x100);
ASSERT_REG_POSITION(framebuffer.output_merger, 0x100);
ASSERT_REG_POSITION(framebuffer.framebuffer, 0x110);

ASSERT_REG_POSITION(lighting, 0x140);
ASSERT_REG_POSITION(vertex_attributes, 0x200);
ASSERT_REG_POSITION(index_array, 0x227);
ASSERT_REG_POSITION(num_vertices, 0x228);
ASSERT_REG_POSITION(vertex_offset, 0x22a);
ASSERT_REG_POSITION(trigger_draw, 0x22e);
ASSERT_REG_POSITION(trigger_draw_indexed, 0x22f);
ASSERT_REG_POSITION(vs_default_attributes_setup, 0x232);
ASSERT_REG_POSITION(command_buffer, 0x238);
ASSERT_REG_POSITION(gpu_mode, 0x245);
ASSERT_REG_POSITION(triangle_topology, 0x25e);
ASSERT_REG_POSITION(restart_primitive, 0x25f);
ASSERT_REG_POSITION(gs, 0x280);
ASSERT_REG_POSITION(vs, 0x2b0);

#undef ASSERT_REG_POSITION
#endif // !defined(_MSC_VER)

static_assert(sizeof(Regs::ShaderConfig) == 0x30 * sizeof(u32),
              "ShaderConfig structure has incorrect size");

// The total number of registers is chosen arbitrarily, but let's make sure it's not some odd value
// anyway.
static_assert(sizeof(Regs) <= 0x300 * sizeof(u32),
              "Register set structure larger than it should be");
static_assert(sizeof(Regs) >= 0x300 * sizeof(u32),
              "Register set structure smaller than it should be");

/// Initialize Pica state
void Init();

/// Shutdown Pica state
void Shutdown();

} // namespace