1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
|
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <array>
#include <cmath>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/color.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/vector_math.h"
#include "core/memory.h"
#include "core/hw/gpu.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/pica.h"
#include "video_core/pica_state.h"
#include "video_core/pica_types.h"
#include "video_core/rasterizer.h"
#include "video_core/utils.h"
#include "video_core/shader/shader.h"
namespace Pica {
namespace Rasterizer {
static void DrawPixel(int x, int y, const Math::Vec4<u8>& color) {
const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
// Similarly to textures, the render framebuffer is laid out from bottom to top, too.
// NOTE: The framebuffer height register contains the actual FB height minus one.
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
u8* dst_pixel = Memory::GetPhysicalPointer(addr) + dst_offset;
switch (framebuffer.color_format) {
case Regs::ColorFormat::RGBA8:
Color::EncodeRGBA8(color, dst_pixel);
break;
case Regs::ColorFormat::RGB8:
Color::EncodeRGB8(color, dst_pixel);
break;
case Regs::ColorFormat::RGB5A1:
Color::EncodeRGB5A1(color, dst_pixel);
break;
case Regs::ColorFormat::RGB565:
Color::EncodeRGB565(color, dst_pixel);
break;
case Regs::ColorFormat::RGBA4:
Color::EncodeRGBA4(color, dst_pixel);
break;
default:
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
UNIMPLEMENTED();
}
}
static const Math::Vec4<u8> GetPixel(int x, int y) {
const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetColorBufferPhysicalAddress();
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = GPU::Regs::BytesPerPixel(GPU::Regs::PixelFormat(framebuffer.color_format.Value()));
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * framebuffer.width * bytes_per_pixel;
u8* src_pixel = Memory::GetPhysicalPointer(addr) + src_offset;
switch (framebuffer.color_format) {
case Regs::ColorFormat::RGBA8:
return Color::DecodeRGBA8(src_pixel);
case Regs::ColorFormat::RGB8:
return Color::DecodeRGB8(src_pixel);
case Regs::ColorFormat::RGB5A1:
return Color::DecodeRGB5A1(src_pixel);
case Regs::ColorFormat::RGB565:
return Color::DecodeRGB565(src_pixel);
case Regs::ColorFormat::RGBA4:
return Color::DecodeRGBA4(src_pixel);
default:
LOG_CRITICAL(Render_Software, "Unknown framebuffer color format %x", framebuffer.color_format.Value());
UNIMPLEMENTED();
}
return {0, 0, 0, 0};
}
static u32 GetDepth(int x, int y) {
const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = Regs::BytesPerDepthPixel(framebuffer.depth_format);
u32 stride = framebuffer.width * bytes_per_pixel;
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
u8* src_pixel = depth_buffer + src_offset;
switch (framebuffer.depth_format) {
case Regs::DepthFormat::D16:
return Color::DecodeD16(src_pixel);
case Regs::DepthFormat::D24:
return Color::DecodeD24(src_pixel);
case Regs::DepthFormat::D24S8:
return Color::DecodeD24S8(src_pixel).x;
default:
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
UNIMPLEMENTED();
return 0;
}
}
static u8 GetStencil(int x, int y) {
const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(framebuffer.depth_format);
u32 stride = framebuffer.width * bytes_per_pixel;
u32 src_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
u8* src_pixel = depth_buffer + src_offset;
switch (framebuffer.depth_format) {
case Regs::DepthFormat::D24S8:
return Color::DecodeD24S8(src_pixel).y;
default:
LOG_WARNING(HW_GPU, "GetStencil called for function which doesn't have a stencil component (format %u)", framebuffer.depth_format);
return 0;
}
}
static void SetDepth(int x, int y, u32 value) {
const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = Regs::BytesPerDepthPixel(framebuffer.depth_format);
u32 stride = framebuffer.width * bytes_per_pixel;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
u8* dst_pixel = depth_buffer + dst_offset;
switch (framebuffer.depth_format) {
case Regs::DepthFormat::D16:
Color::EncodeD16(value, dst_pixel);
break;
case Regs::DepthFormat::D24:
Color::EncodeD24(value, dst_pixel);
break;
case Regs::DepthFormat::D24S8:
Color::EncodeD24X8(value, dst_pixel);
break;
default:
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
UNIMPLEMENTED();
break;
}
}
static void SetStencil(int x, int y, u8 value) {
const auto& framebuffer = g_state.regs.framebuffer;
const PAddr addr = framebuffer.GetDepthBufferPhysicalAddress();
u8* depth_buffer = Memory::GetPhysicalPointer(addr);
y = framebuffer.height - y;
const u32 coarse_y = y & ~7;
u32 bytes_per_pixel = Pica::Regs::BytesPerDepthPixel(framebuffer.depth_format);
u32 stride = framebuffer.width * bytes_per_pixel;
u32 dst_offset = VideoCore::GetMortonOffset(x, y, bytes_per_pixel) + coarse_y * stride;
u8* dst_pixel = depth_buffer + dst_offset;
switch (framebuffer.depth_format) {
case Pica::Regs::DepthFormat::D16:
case Pica::Regs::DepthFormat::D24:
// Nothing to do
break;
case Pica::Regs::DepthFormat::D24S8:
Color::EncodeX24S8(value, dst_pixel);
break;
default:
LOG_CRITICAL(HW_GPU, "Unimplemented depth format %u", framebuffer.depth_format);
UNIMPLEMENTED();
break;
}
}
static u8 PerformStencilAction(Regs::StencilAction action, u8 old_stencil, u8 ref) {
switch (action) {
case Regs::StencilAction::Keep:
return old_stencil;
case Regs::StencilAction::Zero:
return 0;
case Regs::StencilAction::Replace:
return ref;
case Regs::StencilAction::Increment:
// Saturated increment
return std::min<u8>(old_stencil, 254) + 1;
case Regs::StencilAction::Decrement:
// Saturated decrement
return std::max<u8>(old_stencil, 1) - 1;
case Regs::StencilAction::Invert:
return ~old_stencil;
case Regs::StencilAction::IncrementWrap:
return old_stencil + 1;
case Regs::StencilAction::DecrementWrap:
return old_stencil - 1;
default:
LOG_CRITICAL(HW_GPU, "Unknown stencil action %x", (int)action);
UNIMPLEMENTED();
return 0;
}
}
// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values
struct Fix12P4 {
Fix12P4() {}
Fix12P4(u16 val) : val(val) {}
static u16 FracMask() { return 0xF; }
static u16 IntMask() { return (u16)~0xF; }
operator u16() const {
return val;
}
bool operator < (const Fix12P4& oth) const {
return (u16)*this < (u16)oth;
}
private:
u16 val;
};
/**
* Calculate signed area of the triangle spanned by the three argument vertices.
* The sign denotes an orientation.
*
* @todo define orientation concretely.
*/
static int SignedArea (const Math::Vec2<Fix12P4>& vtx1,
const Math::Vec2<Fix12P4>& vtx2,
const Math::Vec2<Fix12P4>& vtx3) {
const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0);
const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0);
// TODO: There is a very small chance this will overflow for sizeof(int) == 4
return Math::Cross(vec1, vec2).z;
};
MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
/**
* Helper function for ProcessTriangle with the "reversed" flag to allow for implementing
* culling via recursion.
*/
static void ProcessTriangleInternal(const Shader::OutputVertex& v0,
const Shader::OutputVertex& v1,
const Shader::OutputVertex& v2,
bool reversed = false)
{
const auto& regs = g_state.regs;
MICROPROFILE_SCOPE(GPU_Rasterization);
// vertex positions in rasterizer coordinates
static auto FloatToFix = [](float24 flt) {
// TODO: Rounding here is necessary to prevent garbage pixels at
// triangle borders. Is it that the correct solution, though?
return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f)));
};
static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) {
return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)};
};
Math::Vec3<Fix12P4> vtxpos[3]{ ScreenToRasterizerCoordinates(v0.screenpos),
ScreenToRasterizerCoordinates(v1.screenpos),
ScreenToRasterizerCoordinates(v2.screenpos) };
if (regs.cull_mode == Regs::CullMode::KeepAll) {
// Make sure we always end up with a triangle wound counter-clockwise
if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) {
ProcessTriangleInternal(v0, v2, v1, true);
return;
}
} else {
if (!reversed && regs.cull_mode == Regs::CullMode::KeepClockWise) {
// Reverse vertex order and use the CCW code path.
ProcessTriangleInternal(v0, v2, v1, true);
return;
}
// Cull away triangles which are wound clockwise.
if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0)
return;
}
// TODO: Proper scissor rect test!
u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x});
u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y});
min_x &= Fix12P4::IntMask();
min_y &= Fix12P4::IntMask();
max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask());
max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask());
// Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not
// drawn. Pixels on any other triangle border are drawn. This is implemented with three bias
// values which are added to the barycentric coordinates w0, w1 and w2, respectively.
// NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones...
auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx,
const Math::Vec2<Fix12P4>& line1,
const Math::Vec2<Fix12P4>& line2)
{
if (line1.y == line2.y) {
// just check if vertex is above us => bottom line parallel to x-axis
return vtx.y < line1.y;
} else {
// check if vertex is on our left => right side
// TODO: Not sure how likely this is to overflow
return (int)vtx.x < (int)line1.x + ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / ((int)line2.y - (int)line1.y);
}
};
int bias0 = IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0;
int bias1 = IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0;
int bias2 = IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
auto textures = regs.GetTextures();
auto tev_stages = regs.GetTevStages();
bool stencil_action_enable = g_state.regs.output_merger.stencil_test.enable && g_state.regs.framebuffer.depth_format == Regs::DepthFormat::D24S8;
const auto stencil_test = g_state.regs.output_merger.stencil_test;
// Enter rasterization loop, starting at the center of the topleft bounding box corner.
// TODO: Not sure if looping through x first might be faster
for (u16 y = min_y + 8; y < max_y; y += 0x10) {
for (u16 x = min_x + 8; x < max_x; x += 0x10) {
// Calculate the barycentric coordinates w0, w1 and w2
int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y});
int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y});
int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y});
int wsum = w0 + w1 + w2;
// If current pixel is not covered by the current primitive
if (w0 < 0 || w1 < 0 || w2 < 0)
continue;
auto baricentric_coordinates = Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)),
float24::FromFloat32(static_cast<float>(w1)),
float24::FromFloat32(static_cast<float>(w2)));
float24 interpolated_w_inverse = float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates);
// Perspective correct attribute interpolation:
// Attribute values cannot be calculated by simple linear interpolation since
// they are not linear in screen space. For example, when interpolating a
// texture coordinate across two vertices, something simple like
// u = (u0*w0 + u1*w1)/(w0+w1)
// will not work. However, the attribute value divided by the
// clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear
// in screenspace. Hence, we can linearly interpolate these two independently and
// calculate the interpolated attribute by dividing the results.
// I.e.
// u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1)
// one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1)
// u = u_over_w / one_over_w
//
// The generalization to three vertices is straightforward in baricentric coordinates.
auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) {
auto attr_over_w = Math::MakeVec(attr0, attr1, attr2);
float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates);
return interpolated_attr_over_w * interpolated_w_inverse;
};
Math::Vec4<u8> primary_color{
(u8)(GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * 255),
(u8)(GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * 255)
};
Math::Vec2<float24> uv[3];
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u());
uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v());
uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u());
uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v());
Math::Vec4<u8> texture_color[3]{};
for (int i = 0; i < 3; ++i) {
const auto& texture = textures[i];
if (!texture.enabled)
continue;
DEBUG_ASSERT(0 != texture.config.address);
int s = (int)(uv[i].u() * float24::FromFloat32(static_cast<float>(texture.config.width))).ToFloat32();
int t = (int)(uv[i].v() * float24::FromFloat32(static_cast<float>(texture.config.height))).ToFloat32();
static auto GetWrappedTexCoord = [](Regs::TextureConfig::WrapMode mode, int val, unsigned size) {
switch (mode) {
case Regs::TextureConfig::ClampToEdge:
val = std::max(val, 0);
val = std::min(val, (int)size - 1);
return val;
case Regs::TextureConfig::ClampToBorder:
return val;
case Regs::TextureConfig::Repeat:
return (int)((unsigned)val % size);
case Regs::TextureConfig::MirroredRepeat:
{
unsigned int coord = ((unsigned)val % (2 * size));
if (coord >= size)
coord = 2 * size - 1 - coord;
return (int)coord;
}
default:
LOG_ERROR(HW_GPU, "Unknown texture coordinate wrapping mode %x", (int)mode);
UNIMPLEMENTED();
return 0;
}
};
if ((texture.config.wrap_s == Regs::TextureConfig::ClampToBorder && (s < 0 || s >= texture.config.width))
|| (texture.config.wrap_t == Regs::TextureConfig::ClampToBorder && (t < 0 || t >= texture.config.height))) {
auto border_color = texture.config.border_color;
texture_color[i] = { border_color.r, border_color.g, border_color.b, border_color.a };
} else {
// Textures are laid out from bottom to top, hence we invert the t coordinate.
// NOTE: This may not be the right place for the inversion.
// TODO: Check if this applies to ETC textures, too.
s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width);
t = texture.config.height - 1 - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height);
u8* texture_data = Memory::GetPhysicalPointer(texture.config.GetPhysicalAddress());
auto info = DebugUtils::TextureInfo::FromPicaRegister(texture.config, texture.format);
// TODO: Apply the min and mag filters to the texture
texture_color[i] = DebugUtils::LookupTexture(texture_data, s, t, info);
#if PICA_DUMP_TEXTURES
DebugUtils::DumpTexture(texture.config, texture_data);
#endif
}
}
// Texture environment - consists of 6 stages of color and alpha combining.
//
// Color combiners take three input color values from some source (e.g. interpolated
// vertex color, texture color, previous stage, etc), perform some very simple
// operations on each of them (e.g. inversion) and then calculate the output color
// with some basic arithmetic. Alpha combiners can be configured separately but work
// analogously.
Math::Vec4<u8> combiner_output;
Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0};
Math::Vec4<u8> next_combiner_buffer = {
regs.tev_combiner_buffer_color.r, regs.tev_combiner_buffer_color.g,
regs.tev_combiner_buffer_color.b, regs.tev_combiner_buffer_color.a
};
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); ++tev_stage_index) {
const auto& tev_stage = tev_stages[tev_stage_index];
using Source = Regs::TevStageConfig::Source;
using ColorModifier = Regs::TevStageConfig::ColorModifier;
using AlphaModifier = Regs::TevStageConfig::AlphaModifier;
using Operation = Regs::TevStageConfig::Operation;
auto GetSource = [&](Source source) -> Math::Vec4<u8> {
switch (source) {
case Source::PrimaryColor:
// HACK: Until we implement fragment lighting, use primary_color
case Source::PrimaryFragmentColor:
return primary_color;
// HACK: Until we implement fragment lighting, use zero
case Source::SecondaryFragmentColor:
return {0, 0, 0, 0};
case Source::Texture0:
return texture_color[0];
case Source::Texture1:
return texture_color[1];
case Source::Texture2:
return texture_color[2];
case Source::PreviousBuffer:
return combiner_buffer;
case Source::Constant:
return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, tev_stage.const_a};
case Source::Previous:
return combiner_output;
default:
LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source);
UNIMPLEMENTED();
return {0, 0, 0, 0};
}
};
static auto GetColorModifier = [](ColorModifier factor, const Math::Vec4<u8>& values) -> Math::Vec3<u8> {
switch (factor) {
case ColorModifier::SourceColor:
return values.rgb();
case ColorModifier::OneMinusSourceColor:
return (Math::Vec3<u8>(255, 255, 255) - values.rgb()).Cast<u8>();
case ColorModifier::SourceAlpha:
return values.aaa();
case ColorModifier::OneMinusSourceAlpha:
return (Math::Vec3<u8>(255, 255, 255) - values.aaa()).Cast<u8>();
case ColorModifier::SourceRed:
return values.rrr();
case ColorModifier::OneMinusSourceRed:
return (Math::Vec3<u8>(255, 255, 255) - values.rrr()).Cast<u8>();
case ColorModifier::SourceGreen:
return values.ggg();
case ColorModifier::OneMinusSourceGreen:
return (Math::Vec3<u8>(255, 255, 255) - values.ggg()).Cast<u8>();
case ColorModifier::SourceBlue:
return values.bbb();
case ColorModifier::OneMinusSourceBlue:
return (Math::Vec3<u8>(255, 255, 255) - values.bbb()).Cast<u8>();
}
};
static auto GetAlphaModifier = [](AlphaModifier factor, const Math::Vec4<u8>& values) -> u8 {
switch (factor) {
case AlphaModifier::SourceAlpha:
return values.a();
case AlphaModifier::OneMinusSourceAlpha:
return 255 - values.a();
case AlphaModifier::SourceRed:
return values.r();
case AlphaModifier::OneMinusSourceRed:
return 255 - values.r();
case AlphaModifier::SourceGreen:
return values.g();
case AlphaModifier::OneMinusSourceGreen:
return 255 - values.g();
case AlphaModifier::SourceBlue:
return values.b();
case AlphaModifier::OneMinusSourceBlue:
return 255 - values.b();
}
};
static auto ColorCombine = [](Operation op, const Math::Vec3<u8> input[3]) -> Math::Vec3<u8> {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return ((input[0] * input[1]) / 255).Cast<u8>();
case Operation::Add:
{
auto result = input[0] + input[1];
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
result.b() = std::min(255, result.b());
return result.Cast<u8>();
}
case Operation::AddSigned:
{
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
auto result = input[0].Cast<int>() + input[1].Cast<int>() - Math::MakeVec<int>(128, 128, 128);
result.r() = MathUtil::Clamp<int>(result.r(), 0, 255);
result.g() = MathUtil::Clamp<int>(result.g(), 0, 255);
result.b() = MathUtil::Clamp<int>(result.b(), 0, 255);
return result.Cast<u8>();
}
case Operation::Lerp:
return ((input[0] * input[2] + input[1] * (Math::MakeVec<u8>(255, 255, 255) - input[2]).Cast<u8>()) / 255).Cast<u8>();
case Operation::Subtract:
{
auto result = input[0].Cast<int>() - input[1].Cast<int>();
result.r() = std::max(0, result.r());
result.g() = std::max(0, result.g());
result.b() = std::max(0, result.b());
return result.Cast<u8>();
}
case Operation::MultiplyThenAdd:
{
auto result = (input[0] * input[1] + 255 * input[2].Cast<int>()) / 255;
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
result.b() = std::min(255, result.b());
return result.Cast<u8>();
}
case Operation::AddThenMultiply:
{
auto result = input[0] + input[1];
result.r() = std::min(255, result.r());
result.g() = std::min(255, result.g());
result.b() = std::min(255, result.b());
result = (result * input[2].Cast<int>()) / 255;
return result.Cast<u8>();
}
case Operation::Dot3_RGB:
{
// Not fully accurate.
// Worst case scenario seems to yield a +/-3 error
// Some HW results indicate that the per-component computation can't have a higher precision than 1/256,
// while dot3_rgb( (0x80,g0,b0),(0x7F,g1,b1) ) and dot3_rgb( (0x80,g0,b0),(0x80,g1,b1) ) give different results
int result = ((input[0].r() * 2 - 255) * (input[1].r() * 2 - 255) + 128) / 256 +
((input[0].g() * 2 - 255) * (input[1].g() * 2 - 255) + 128) / 256 +
((input[0].b() * 2 - 255) * (input[1].b() * 2 - 255) + 128) / 256;
result = std::max(0, std::min(255, result));
return { (u8)result, (u8)result, (u8)result };
}
default:
LOG_ERROR(HW_GPU, "Unknown color combiner operation %d", (int)op);
UNIMPLEMENTED();
return {0, 0, 0};
}
};
static auto AlphaCombine = [](Operation op, const std::array<u8,3>& input) -> u8 {
switch (op) {
case Operation::Replace:
return input[0];
case Operation::Modulate:
return input[0] * input[1] / 255;
case Operation::Add:
return std::min(255, input[0] + input[1]);
case Operation::AddSigned:
{
// TODO(bunnei): Verify that the color conversion from (float) 0.5f to (byte) 128 is correct
auto result = static_cast<int>(input[0]) + static_cast<int>(input[1]) - 128;
return static_cast<u8>(MathUtil::Clamp<int>(result, 0, 255));
}
case Operation::Lerp:
return (input[0] * input[2] + input[1] * (255 - input[2])) / 255;
case Operation::Subtract:
return std::max(0, (int)input[0] - (int)input[1]);
case Operation::MultiplyThenAdd:
return std::min(255, (input[0] * input[1] + 255 * input[2]) / 255);
case Operation::AddThenMultiply:
return (std::min(255, (input[0] + input[1])) * input[2]) / 255;
default:
LOG_ERROR(HW_GPU, "Unknown alpha combiner operation %d", (int)op);
UNIMPLEMENTED();
return 0;
}
};
// color combiner
// NOTE: Not sure if the alpha combiner might use the color output of the previous
// stage as input. Hence, we currently don't directly write the result to
// combiner_output.rgb(), but instead store it in a temporary variable until
// alpha combining has been done.
Math::Vec3<u8> color_result[3] = {
GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)),
GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)),
GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3))
};
auto color_output = ColorCombine(tev_stage.color_op, color_result);
// alpha combiner
std::array<u8,3> alpha_result = {{
GetAlphaModifier(tev_stage.alpha_modifier1, GetSource(tev_stage.alpha_source1)),
GetAlphaModifier(tev_stage.alpha_modifier2, GetSource(tev_stage.alpha_source2)),
GetAlphaModifier(tev_stage.alpha_modifier3, GetSource(tev_stage.alpha_source3))
}};
auto alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result);
combiner_output[0] = std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier());
combiner_output[1] = std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier());
combiner_output[2] = std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier());
combiner_output[3] = std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier());
combiner_buffer = next_combiner_buffer;
if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor(tev_stage_index)) {
next_combiner_buffer.r() = combiner_output.r();
next_combiner_buffer.g() = combiner_output.g();
next_combiner_buffer.b() = combiner_output.b();
}
if (regs.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha(tev_stage_index)) {
next_combiner_buffer.a() = combiner_output.a();
}
}
const auto& output_merger = regs.output_merger;
// TODO: Does alpha testing happen before or after stencil?
if (output_merger.alpha_test.enable) {
bool pass = false;
switch (output_merger.alpha_test.func) {
case Regs::CompareFunc::Never:
pass = false;
break;
case Regs::CompareFunc::Always:
pass = true;
break;
case Regs::CompareFunc::Equal:
pass = combiner_output.a() == output_merger.alpha_test.ref;
break;
case Regs::CompareFunc::NotEqual:
pass = combiner_output.a() != output_merger.alpha_test.ref;
break;
case Regs::CompareFunc::LessThan:
pass = combiner_output.a() < output_merger.alpha_test.ref;
break;
case Regs::CompareFunc::LessThanOrEqual:
pass = combiner_output.a() <= output_merger.alpha_test.ref;
break;
case Regs::CompareFunc::GreaterThan:
pass = combiner_output.a() > output_merger.alpha_test.ref;
break;
case Regs::CompareFunc::GreaterThanOrEqual:
pass = combiner_output.a() >= output_merger.alpha_test.ref;
break;
}
if (!pass)
continue;
}
u8 old_stencil = 0;
auto UpdateStencil = [stencil_test, x, y, &old_stencil](Pica::Regs::StencilAction action) {
u8 new_stencil = PerformStencilAction(action, old_stencil, stencil_test.reference_value);
if (g_state.regs.framebuffer.allow_depth_stencil_write != 0)
SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) | (old_stencil & ~stencil_test.write_mask));
};
if (stencil_action_enable) {
old_stencil = GetStencil(x >> 4, y >> 4);
u8 dest = old_stencil & stencil_test.input_mask;
u8 ref = stencil_test.reference_value & stencil_test.input_mask;
bool pass = false;
switch (stencil_test.func) {
case Regs::CompareFunc::Never:
pass = false;
break;
case Regs::CompareFunc::Always:
pass = true;
break;
case Regs::CompareFunc::Equal:
pass = (ref == dest);
break;
case Regs::CompareFunc::NotEqual:
pass = (ref != dest);
break;
case Regs::CompareFunc::LessThan:
pass = (ref < dest);
break;
case Regs::CompareFunc::LessThanOrEqual:
pass = (ref <= dest);
break;
case Regs::CompareFunc::GreaterThan:
pass = (ref > dest);
break;
case Regs::CompareFunc::GreaterThanOrEqual:
pass = (ref >= dest);
break;
}
if (!pass) {
UpdateStencil(stencil_test.action_stencil_fail);
continue;
}
}
// interpolated_z = z / w
float interpolated_z_over_w = (v0.screenpos[2].ToFloat32() * w0 +
v1.screenpos[2].ToFloat32() * w1 +
v2.screenpos[2].ToFloat32() * w2) / wsum;
// Not fully accurate. About 3 bits in precision are missing.
// Z-Buffer (z / w * scale + offset)
float depth_scale = float24::FromRaw(regs.viewport_depth_range).ToFloat32();
float depth_offset = float24::FromRaw(regs.viewport_depth_near_plane).ToFloat32();
float depth = interpolated_z_over_w * depth_scale + depth_offset;
// Potentially switch to W-Buffer
if (regs.depthmap_enable == Pica::Regs::DepthBuffering::WBuffering) {
// W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w)
depth *= interpolated_w_inverse.ToFloat32() * wsum;
}
// Clamp the result
depth = MathUtil::Clamp(depth, 0.0f, 1.0f);
// Convert float to integer
unsigned num_bits = Regs::DepthBitsPerPixel(regs.framebuffer.depth_format);
u32 z = (u32)(depth * ((1 << num_bits) - 1));
if (output_merger.depth_test_enable) {
u32 ref_z = GetDepth(x >> 4, y >> 4);
bool pass = false;
switch (output_merger.depth_test_func) {
case Regs::CompareFunc::Never:
pass = false;
break;
case Regs::CompareFunc::Always:
pass = true;
break;
case Regs::CompareFunc::Equal:
pass = z == ref_z;
break;
case Regs::CompareFunc::NotEqual:
pass = z != ref_z;
break;
case Regs::CompareFunc::LessThan:
pass = z < ref_z;
break;
case Regs::CompareFunc::LessThanOrEqual:
pass = z <= ref_z;
break;
case Regs::CompareFunc::GreaterThan:
pass = z > ref_z;
break;
case Regs::CompareFunc::GreaterThanOrEqual:
pass = z >= ref_z;
break;
}
if (!pass) {
if (stencil_action_enable)
UpdateStencil(stencil_test.action_depth_fail);
continue;
}
}
if (regs.framebuffer.allow_depth_stencil_write != 0 && output_merger.depth_write_enable)
SetDepth(x >> 4, y >> 4, z);
// The stencil depth_pass action is executed even if depth testing is disabled
if (stencil_action_enable)
UpdateStencil(stencil_test.action_depth_pass);
auto dest = GetPixel(x >> 4, y >> 4);
Math::Vec4<u8> blend_output = combiner_output;
if (output_merger.alphablend_enable) {
auto params = output_merger.alpha_blending;
auto LookupFactor = [&](unsigned channel, Regs::BlendFactor factor) -> u8 {
DEBUG_ASSERT(channel < 4);
const Math::Vec4<u8> blend_const = {
static_cast<u8>(output_merger.blend_const.r),
static_cast<u8>(output_merger.blend_const.g),
static_cast<u8>(output_merger.blend_const.b),
static_cast<u8>(output_merger.blend_const.a)
};
switch (factor) {
case Regs::BlendFactor::Zero:
return 0;
case Regs::BlendFactor::One:
return 255;
case Regs::BlendFactor::SourceColor:
return combiner_output[channel];
case Regs::BlendFactor::OneMinusSourceColor:
return 255 - combiner_output[channel];
case Regs::BlendFactor::DestColor:
return dest[channel];
case Regs::BlendFactor::OneMinusDestColor:
return 255 - dest[channel];
case Regs::BlendFactor::SourceAlpha:
return combiner_output.a();
case Regs::BlendFactor::OneMinusSourceAlpha:
return 255 - combiner_output.a();
case Regs::BlendFactor::DestAlpha:
return dest.a();
case Regs::BlendFactor::OneMinusDestAlpha:
return 255 - dest.a();
case Regs::BlendFactor::ConstantColor:
return blend_const[channel];
case Regs::BlendFactor::OneMinusConstantColor:
return 255 - blend_const[channel];
case Regs::BlendFactor::ConstantAlpha:
return blend_const.a();
case Regs::BlendFactor::OneMinusConstantAlpha:
return 255 - blend_const.a();
case Regs::BlendFactor::SourceAlphaSaturate:
// Returns 1.0 for the alpha channel
if (channel == 3)
return 255;
return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a()));
default:
LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor);
UNIMPLEMENTED();
break;
}
return combiner_output[channel];
};
static auto EvaluateBlendEquation = [](const Math::Vec4<u8>& src, const Math::Vec4<u8>& srcfactor,
const Math::Vec4<u8>& dest, const Math::Vec4<u8>& destfactor,
Regs::BlendEquation equation) {
Math::Vec4<int> result;
auto src_result = (src * srcfactor).Cast<int>();
auto dst_result = (dest * destfactor).Cast<int>();
switch (equation) {
case Regs::BlendEquation::Add:
result = (src_result + dst_result) / 255;
break;
case Regs::BlendEquation::Subtract:
result = (src_result - dst_result) / 255;
break;
case Regs::BlendEquation::ReverseSubtract:
result = (dst_result - src_result) / 255;
break;
// TODO: How do these two actually work?
// OpenGL doesn't include the blend factors in the min/max computations,
// but is this what the 3DS actually does?
case Regs::BlendEquation::Min:
result.r() = std::min(src.r(), dest.r());
result.g() = std::min(src.g(), dest.g());
result.b() = std::min(src.b(), dest.b());
result.a() = std::min(src.a(), dest.a());
break;
case Regs::BlendEquation::Max:
result.r() = std::max(src.r(), dest.r());
result.g() = std::max(src.g(), dest.g());
result.b() = std::max(src.b(), dest.b());
result.a() = std::max(src.a(), dest.a());
break;
default:
LOG_CRITICAL(HW_GPU, "Unknown RGB blend equation %x", equation);
UNIMPLEMENTED();
}
return Math::Vec4<u8>(MathUtil::Clamp(result.r(), 0, 255),
MathUtil::Clamp(result.g(), 0, 255),
MathUtil::Clamp(result.b(), 0, 255),
MathUtil::Clamp(result.a(), 0, 255));
};
auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb),
LookupFactor(1, params.factor_source_rgb),
LookupFactor(2, params.factor_source_rgb),
LookupFactor(3, params.factor_source_a));
auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb),
LookupFactor(1, params.factor_dest_rgb),
LookupFactor(2, params.factor_dest_rgb),
LookupFactor(3, params.factor_dest_a));
blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_rgb);
blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, params.blend_equation_a).a();
} else {
static auto LogicOp = [](u8 src, u8 dest, Regs::LogicOp op) -> u8 {
switch (op) {
case Regs::LogicOp::Clear:
return 0;
case Regs::LogicOp::And:
return src & dest;
case Regs::LogicOp::AndReverse:
return src & ~dest;
case Regs::LogicOp::Copy:
return src;
case Regs::LogicOp::Set:
return 255;
case Regs::LogicOp::CopyInverted:
return ~src;
case Regs::LogicOp::NoOp:
return dest;
case Regs::LogicOp::Invert:
return ~dest;
case Regs::LogicOp::Nand:
return ~(src & dest);
case Regs::LogicOp::Or:
return src | dest;
case Regs::LogicOp::Nor:
return ~(src | dest);
case Regs::LogicOp::Xor:
return src ^ dest;
case Regs::LogicOp::Equiv:
return ~(src ^ dest);
case Regs::LogicOp::AndInverted:
return ~src & dest;
case Regs::LogicOp::OrReverse:
return src | ~dest;
case Regs::LogicOp::OrInverted:
return ~src | dest;
}
};
blend_output = Math::MakeVec(
LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op),
LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op),
LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op),
LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op));
}
const Math::Vec4<u8> result = {
output_merger.red_enable ? blend_output.r() : dest.r(),
output_merger.green_enable ? blend_output.g() : dest.g(),
output_merger.blue_enable ? blend_output.b() : dest.b(),
output_merger.alpha_enable ? blend_output.a() : dest.a()
};
if (regs.framebuffer.allow_color_write != 0)
DrawPixel(x >> 4, y >> 4, result);
}
}
}
void ProcessTriangle(const Shader::OutputVertex& v0,
const Shader::OutputVertex& v1,
const Shader::OutputVertex& v2) {
ProcessTriangleInternal(v0, v1, v2);
}
} // namespace Rasterizer
} // namespace Pica
|