1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
|
// Copyright 2019 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <vector>
#include <fmt/format.h>
#include "common/assert.h"
#include "common/bit_field.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/node_helper.h"
#include "video_core/shader/shader_ir.h"
namespace VideoCommon::Shader {
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
using Tegra::Shader::Register;
using Tegra::Shader::TextureMiscMode;
using Tegra::Shader::TextureProcessMode;
using Tegra::Shader::TextureType;
static std::size_t GetCoordCount(TextureType texture_type) {
switch (texture_type) {
case TextureType::Texture1D:
return 1;
case TextureType::Texture2D:
return 2;
case TextureType::Texture3D:
case TextureType::TextureCube:
return 3;
default:
UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast<u32>(texture_type));
return 0;
}
}
u32 ShaderIR::DecodeTexture(NodeBlock& bb, u32 pc) {
const Instruction instr = {program_code[pc]};
const auto opcode = OpCode::Decode(instr);
bool is_bindless = false;
switch (opcode->get().GetId()) {
case OpCode::Id::TEX: {
const TextureType texture_type{instr.tex.texture_type};
const bool is_array = instr.tex.array != 0;
const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI);
const bool depth_compare = instr.tex.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.tex.GetTextureProcessMode();
WriteTexInstructionFloat(
bb, instr,
GetTexCode(instr, texture_type, process_mode, depth_compare, is_array, is_aoffi, {}));
break;
}
case OpCode::Id::TEX_B: {
UNIMPLEMENTED_IF_MSG(instr.tex.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
const TextureType texture_type{instr.tex_b.texture_type};
const bool is_array = instr.tex_b.array != 0;
const bool is_aoffi = instr.tex.UsesMiscMode(TextureMiscMode::AOFFI);
const bool depth_compare = instr.tex_b.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.tex_b.GetTextureProcessMode();
WriteTexInstructionFloat(bb, instr,
GetTexCode(instr, texture_type, process_mode, depth_compare,
is_array, is_aoffi, {instr.gpr20}));
break;
}
case OpCode::Id::TEXS: {
const TextureType texture_type{instr.texs.GetTextureType()};
const bool is_array{instr.texs.IsArrayTexture()};
const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC);
const auto process_mode = instr.texs.GetTextureProcessMode();
const Node4 components =
GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array);
if (instr.texs.fp32_flag) {
WriteTexsInstructionFloat(bb, instr, components);
} else {
WriteTexsInstructionHalfFloat(bb, instr, components);
}
break;
}
case OpCode::Id::TLD4_B: {
is_bindless = true;
[[fallthrough]];
}
case OpCode::Id::TLD4: {
UNIMPLEMENTED_IF_MSG(instr.tld4.UsesMiscMode(TextureMiscMode::NDV),
"NDV is not implemented");
const auto texture_type = instr.tld4.texture_type.Value();
const bool depth_compare = is_bindless ? instr.tld4_b.UsesMiscMode(TextureMiscMode::DC)
: instr.tld4.UsesMiscMode(TextureMiscMode::DC);
const bool is_array = instr.tld4.array != 0;
const bool is_aoffi = is_bindless ? instr.tld4_b.UsesMiscMode(TextureMiscMode::AOFFI)
: instr.tld4.UsesMiscMode(TextureMiscMode::AOFFI);
const bool is_ptp = is_bindless ? instr.tld4_b.UsesMiscMode(TextureMiscMode::PTP)
: instr.tld4.UsesMiscMode(TextureMiscMode::PTP);
WriteTexInstructionFloat(bb, instr,
GetTld4Code(instr, texture_type, depth_compare, is_array, is_aoffi,
is_ptp, is_bindless));
break;
}
case OpCode::Id::TLD4S: {
constexpr std::size_t num_coords = 2;
const bool is_aoffi = instr.tld4s.UsesMiscMode(TextureMiscMode::AOFFI);
const bool is_depth_compare = instr.tld4s.UsesMiscMode(TextureMiscMode::DC);
const Node op_a = GetRegister(instr.gpr8);
const Node op_b = GetRegister(instr.gpr20);
// TODO(Subv): Figure out how the sampler type is encoded in the TLD4S instruction.
std::vector<Node> coords;
std::vector<Node> aoffi;
Node depth_compare;
if (is_depth_compare) {
// Note: TLD4S coordinate encoding works just like TEXS's
const Node op_y = GetRegister(instr.gpr8.Value() + 1);
coords.push_back(op_a);
coords.push_back(op_y);
if (is_aoffi) {
aoffi = GetAoffiCoordinates(op_b, num_coords, true);
depth_compare = GetRegister(instr.gpr20.Value() + 1);
} else {
depth_compare = op_b;
}
} else {
// There's no depth compare
coords.push_back(op_a);
if (is_aoffi) {
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
aoffi = GetAoffiCoordinates(op_b, num_coords, true);
} else {
coords.push_back(op_b);
}
}
const Node component = Immediate(static_cast<u32>(instr.tld4s.component));
const SamplerInfo info{TextureType::Texture2D, false, is_depth_compare};
const Sampler& sampler = *GetSampler(instr.sampler, info);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, {}, depth_compare, aoffi, {}, {}, {}, {}, component, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
if (instr.tld4s.fp16_flag) {
WriteTexsInstructionHalfFloat(bb, instr, values, true);
} else {
WriteTexsInstructionFloat(bb, instr, values, true);
}
break;
}
case OpCode::Id::TXD_B:
is_bindless = true;
[[fallthrough]];
case OpCode::Id::TXD: {
UNIMPLEMENTED_IF_MSG(instr.txd.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
const bool is_array = instr.txd.is_array != 0;
u64 base_reg = instr.gpr8.Value();
const auto derivate_reg = instr.gpr20.Value();
const auto texture_type = instr.txd.texture_type.Value();
const auto coord_count = GetCoordCount(texture_type);
const Sampler* sampler =
is_bindless ? GetBindlessSampler(base_reg, {{texture_type, is_array, false}})
: GetSampler(instr.sampler, {{texture_type, is_array, false}});
Node4 values;
if (sampler == nullptr) {
for (u32 element = 0; element < values.size(); ++element) {
values[element] = Immediate(0);
}
WriteTexInstructionFloat(bb, instr, values);
break;
}
if (is_bindless) {
base_reg++;
}
std::vector<Node> coords;
std::vector<Node> derivates;
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(base_reg + i));
const std::size_t derivate = i * 2;
derivates.push_back(GetRegister(derivate_reg + derivate));
derivates.push_back(GetRegister(derivate_reg + derivate + 1));
}
Node array_node = {};
if (is_array) {
const Node info_reg = GetRegister(base_reg + coord_count);
array_node = BitfieldExtract(info_reg, 0, 16);
}
for (u32 element = 0; element < values.size(); ++element) {
MetaTexture meta{*sampler, array_node, {}, {}, {}, derivates, {}, {}, {}, element};
values[element] = Operation(OperationCode::TextureGradient, std::move(meta), coords);
}
WriteTexInstructionFloat(bb, instr, values);
break;
}
case OpCode::Id::TXQ_B:
is_bindless = true;
[[fallthrough]];
case OpCode::Id::TXQ: {
// TODO: The new commits on the texture refactor, change the way samplers work.
// Sadly, not all texture instructions specify the type of texture their sampler
// uses. This must be fixed at a later instance.
const Sampler* sampler =
is_bindless ? GetBindlessSampler(instr.gpr8) : GetSampler(instr.sampler);
if (sampler == nullptr) {
u32 indexer = 0;
for (u32 element = 0; element < 4; ++element) {
if (!instr.txq.IsComponentEnabled(element)) {
continue;
}
const Node value = Immediate(0);
SetTemporary(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
break;
}
u32 indexer = 0;
switch (instr.txq.query_type) {
case Tegra::Shader::TextureQueryType::Dimension: {
for (u32 element = 0; element < 4; ++element) {
if (!instr.txq.IsComponentEnabled(element)) {
continue;
}
MetaTexture meta{*sampler, {}, {}, {}, {}, {}, {}, {}, {}, element};
const Node value =
Operation(OperationCode::TextureQueryDimensions, meta,
GetRegister(instr.gpr8.Value() + (is_bindless ? 1 : 0)));
SetTemporary(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled texture query type: {}",
static_cast<u32>(instr.txq.query_type.Value()));
}
break;
}
case OpCode::Id::TMML_B:
is_bindless = true;
[[fallthrough]];
case OpCode::Id::TMML: {
UNIMPLEMENTED_IF_MSG(instr.tmml.UsesMiscMode(Tegra::Shader::TextureMiscMode::NDV),
"NDV is not implemented");
auto texture_type = instr.tmml.texture_type.Value();
const bool is_array = instr.tmml.array != 0;
const Sampler* sampler =
is_bindless ? GetBindlessSampler(instr.gpr20) : GetSampler(instr.sampler);
if (sampler == nullptr) {
u32 indexer = 0;
for (u32 element = 0; element < 2; ++element) {
if (!instr.tmml.IsComponentEnabled(element)) {
continue;
}
const Node value = Immediate(0);
SetTemporary(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
break;
}
std::vector<Node> coords;
// TODO: Add coordinates for different samplers once other texture types are implemented.
switch (texture_type) {
case TextureType::Texture1D:
coords.push_back(GetRegister(instr.gpr8));
break;
case TextureType::Texture2D:
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
break;
default:
UNIMPLEMENTED_MSG("Unhandled texture type {}", static_cast<u32>(texture_type));
// Fallback to interpreting as a 2D texture for now
coords.push_back(GetRegister(instr.gpr8.Value() + 0));
coords.push_back(GetRegister(instr.gpr8.Value() + 1));
texture_type = TextureType::Texture2D;
}
u32 indexer = 0;
for (u32 element = 0; element < 2; ++element) {
if (!instr.tmml.IsComponentEnabled(element)) {
continue;
}
auto params = coords;
MetaTexture meta{*sampler, {}, {}, {}, {}, {}, {}, {}, {}, element};
const Node value = Operation(OperationCode::TextureQueryLod, meta, std::move(params));
SetTemporary(bb, indexer++, value);
}
for (u32 i = 0; i < indexer; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
break;
}
case OpCode::Id::TLD: {
UNIMPLEMENTED_IF_MSG(instr.tld.aoffi, "AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld.ms, "MS is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tld.cl, "CL is not implemented");
WriteTexInstructionFloat(bb, instr, GetTldCode(instr));
break;
}
case OpCode::Id::TLDS: {
const TextureType texture_type{instr.tlds.GetTextureType()};
const bool is_array{instr.tlds.IsArrayTexture()};
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::AOFFI),
"AOFFI is not implemented");
UNIMPLEMENTED_IF_MSG(instr.tlds.UsesMiscMode(TextureMiscMode::MZ), "MZ is not implemented");
const Node4 components = GetTldsCode(instr, texture_type, is_array);
if (instr.tlds.fp32_flag) {
WriteTexsInstructionFloat(bb, instr, components);
} else {
WriteTexsInstructionHalfFloat(bb, instr, components);
}
break;
}
default:
UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName());
}
return pc;
}
ShaderIR::SamplerInfo ShaderIR::GetSamplerInfo(std::optional<SamplerInfo> sampler_info, u32 offset,
std::optional<u32> buffer) {
if (sampler_info) {
return *sampler_info;
}
const auto sampler =
buffer ? locker.ObtainBindlessSampler(*buffer, offset) : locker.ObtainBoundSampler(offset);
if (!sampler) {
LOG_WARNING(HW_GPU, "Unknown sampler info");
return SamplerInfo{TextureType::Texture2D, false, false, false};
}
return SamplerInfo{sampler->texture_type, sampler->is_array != 0, sampler->is_shadow != 0,
sampler->is_buffer != 0};
}
const Sampler* ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler,
std::optional<SamplerInfo> sampler_info) {
const auto offset = static_cast<u32>(sampler.index.Value());
const auto info = GetSamplerInfo(sampler_info, offset);
// If this sampler has already been used, return the existing mapping.
const auto it =
std::find_if(used_samplers.begin(), used_samplers.end(),
[offset](const Sampler& entry) { return entry.GetOffset() == offset; });
if (it != used_samplers.end()) {
ASSERT(!it->IsBindless() && it->GetType() == info.type && it->IsArray() == info.is_array &&
it->IsShadow() == info.is_shadow && it->IsBuffer() == info.is_buffer);
return &*it;
}
// Otherwise create a new mapping for this sampler
const auto next_index = static_cast<u32>(used_samplers.size());
return &used_samplers.emplace_back(next_index, offset, info.type, info.is_array, info.is_shadow,
info.is_buffer, false);
}
const Sampler* ShaderIR::GetBindlessSampler(Tegra::Shader::Register reg,
std::optional<SamplerInfo> sampler_info) {
const Node sampler_register = GetRegister(reg);
const auto [base_node, tracked_sampler_info] =
TrackSampler(sampler_register, global_code, static_cast<s64>(global_code.size()));
ASSERT(base_node != nullptr);
if (base_node == nullptr) {
return nullptr;
}
if (const auto bindless_sampler_info =
std::get_if<BindlessSamplerNode>(&*tracked_sampler_info)) {
const u32 buffer = bindless_sampler_info->GetIndex();
const u32 offset = bindless_sampler_info->GetOffset();
const auto info = GetSamplerInfo(sampler_info, offset, buffer);
// If this sampler has already been used, return the existing mapping.
const auto it =
std::find_if(used_samplers.begin(), used_samplers.end(),
[buffer = buffer, offset = offset](const Sampler& entry) {
return entry.GetBuffer() == buffer && entry.GetOffset() == offset;
});
if (it != used_samplers.end()) {
ASSERT(it->IsBindless() && it->GetType() == info.type &&
it->IsArray() == info.is_array && it->IsShadow() == info.is_shadow);
return &*it;
}
// Otherwise create a new mapping for this sampler
const auto next_index = static_cast<u32>(used_samplers.size());
return &used_samplers.emplace_back(next_index, offset, buffer, info.type, info.is_array,
info.is_shadow, info.is_buffer, false);
} else if (const auto array_sampler_info =
std::get_if<ArraySamplerNode>(&*tracked_sampler_info)) {
const u32 base_offset = array_sampler_info->GetBaseOffset() / 4;
const auto info = GetSamplerInfo(sampler_info, base_offset);
// If this sampler has already been used, return the existing mapping.
const auto it = std::find_if(
used_samplers.begin(), used_samplers.end(),
[base_offset](const Sampler& entry) { return entry.GetOffset() == base_offset; });
if (it != used_samplers.end()) {
ASSERT(!it->IsBindless() && it->GetType() == info.type &&
it->IsArray() == info.is_array && it->IsShadow() == info.is_shadow &&
it->IsBuffer() == info.is_buffer && it->IsIndexed());
return &*it;
}
uses_indexed_samplers = true;
// Otherwise create a new mapping for this sampler
const auto next_index = static_cast<u32>(used_samplers.size());
return &used_samplers.emplace_back(next_index, base_offset, info.type, info.is_array,
info.is_shadow, info.is_buffer, true);
}
return nullptr;
}
void ShaderIR::WriteTexInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components) {
u32 dest_elem = 0;
for (u32 elem = 0; elem < 4; ++elem) {
if (!instr.tex.IsComponentEnabled(elem)) {
// Skip disabled components
continue;
}
SetTemporary(bb, dest_elem++, components[elem]);
}
// After writing values in temporals, move them to the real registers
for (u32 i = 0; i < dest_elem; ++i) {
SetRegister(bb, instr.gpr0.Value() + i, GetTemporary(i));
}
}
void ShaderIR::WriteTexsInstructionFloat(NodeBlock& bb, Instruction instr, const Node4& components,
bool ignore_mask) {
// TEXS has two destination registers and a swizzle. The first two elements in the swizzle
// go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component) && !ignore_mask)
continue;
SetTemporary(bb, dest_elem++, components[component]);
}
for (u32 i = 0; i < dest_elem; ++i) {
if (i < 2) {
// Write the first two swizzle components to gpr0 and gpr0+1
SetRegister(bb, instr.gpr0.Value() + i % 2, GetTemporary(i));
} else {
ASSERT(instr.texs.HasTwoDestinations());
// Write the rest of the swizzle components to gpr28 and gpr28+1
SetRegister(bb, instr.gpr28.Value() + i % 2, GetTemporary(i));
}
}
}
void ShaderIR::WriteTexsInstructionHalfFloat(NodeBlock& bb, Instruction instr,
const Node4& components, bool ignore_mask) {
// TEXS.F16 destionation registers are packed in two registers in pairs (just like any half
// float instruction).
Node4 values;
u32 dest_elem = 0;
for (u32 component = 0; component < 4; ++component) {
if (!instr.texs.IsComponentEnabled(component) && !ignore_mask)
continue;
values[dest_elem++] = components[component];
}
if (dest_elem == 0)
return;
std::generate(values.begin() + dest_elem, values.end(), [&]() { return Immediate(0); });
const Node first_value = Operation(OperationCode::HPack2, values[0], values[1]);
if (dest_elem <= 2) {
SetRegister(bb, instr.gpr0, first_value);
return;
}
SetTemporary(bb, 0, first_value);
SetTemporary(bb, 1, Operation(OperationCode::HPack2, values[2], values[3]));
SetRegister(bb, instr.gpr0, GetTemporary(0));
SetRegister(bb, instr.gpr28, GetTemporary(1));
}
Node4 ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, std::vector<Node> coords,
Node array, Node depth_compare, u32 bias_offset,
std::vector<Node> aoffi,
std::optional<Tegra::Shader::Register> bindless_reg) {
const auto is_array = static_cast<bool>(array);
const auto is_shadow = static_cast<bool>(depth_compare);
const bool is_bindless = bindless_reg.has_value();
UNIMPLEMENTED_IF_MSG((texture_type == TextureType::Texture3D && (is_array || is_shadow)) ||
(texture_type == TextureType::TextureCube && is_array && is_shadow),
"This method is not supported.");
const SamplerInfo info{texture_type, is_array, is_shadow, false};
const Sampler* sampler =
is_bindless ? GetBindlessSampler(*bindless_reg, info) : GetSampler(instr.sampler, info);
Node4 values;
if (sampler == nullptr) {
for (u32 element = 0; element < values.size(); ++element) {
values[element] = Immediate(0);
}
return values;
}
const bool lod_needed = process_mode == TextureProcessMode::LZ ||
process_mode == TextureProcessMode::LL ||
process_mode == TextureProcessMode::LLA;
// LOD selection (either via bias or explicit textureLod) not supported in GL for
// sampler2DArrayShadow and samplerCubeArrayShadow.
const bool gl_lod_supported =
!((texture_type == Tegra::Shader::TextureType::Texture2D && is_array && is_shadow) ||
(texture_type == Tegra::Shader::TextureType::TextureCube && is_array && is_shadow));
const OperationCode read_method =
(lod_needed && gl_lod_supported) ? OperationCode::TextureLod : OperationCode::Texture;
UNIMPLEMENTED_IF(process_mode != TextureProcessMode::None && !gl_lod_supported);
Node bias;
Node lod;
if (process_mode != TextureProcessMode::None && gl_lod_supported) {
switch (process_mode) {
case TextureProcessMode::LZ:
lod = Immediate(0.0f);
break;
case TextureProcessMode::LB:
// If present, lod or bias are always stored in the register
// indexed by the gpr20 field with an offset depending on the
// usage of the other registers
bias = GetRegister(instr.gpr20.Value() + bias_offset);
break;
case TextureProcessMode::LL:
lod = GetRegister(instr.gpr20.Value() + bias_offset);
break;
default:
UNIMPLEMENTED_MSG("Unimplemented process mode={}", static_cast<u32>(process_mode));
break;
}
}
for (u32 element = 0; element < values.size(); ++element) {
auto copy_coords = coords;
MetaTexture meta{*sampler, array, depth_compare, aoffi, {}, {}, bias, lod, {}, element};
values[element] = Operation(read_method, meta, std::move(copy_coords));
}
return values;
}
Node4 ShaderIR::GetTexCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array,
bool is_aoffi, std::optional<Tegra::Shader::Register> bindless_reg) {
const bool lod_bias_enabled{
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ)};
const bool is_bindless = bindless_reg.has_value();
u64 parameter_register = instr.gpr20.Value();
if (is_bindless) {
++parameter_register;
}
const u32 bias_lod_offset = (is_bindless ? 1 : 0);
if (lod_bias_enabled) {
++parameter_register;
}
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 5);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(coord_register + i));
}
// 1D.DC in OpenGL the 2nd component is ignored.
if (depth_compare && !is_array && texture_type == TextureType::Texture1D) {
coords.push_back(Immediate(0.0f));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
std::vector<Node> aoffi;
if (is_aoffi) {
aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, false);
}
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
dc = GetRegister(parameter_register++);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_lod_offset,
aoffi, bindless_reg);
}
Node4 ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type,
TextureProcessMode process_mode, bool depth_compare, bool is_array) {
const bool lod_bias_enabled =
(process_mode != TextureProcessMode::None && process_mode != TextureProcessMode::LZ);
const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
const u64 last_coord_register =
(is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2))
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
const u32 bias_offset = coord_count > 2 ? 1 : 0;
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
const bool last = (i == (coord_count - 1)) && (coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
Node dc{};
if (depth_compare) {
// Depth is always stored in the register signaled by gpr20 or in the next register if lod
// or bias are used
const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
dc = GetRegister(depth_register);
}
return GetTextureCode(instr, texture_type, process_mode, coords, array, dc, bias_offset, {},
{});
}
Node4 ShaderIR::GetTld4Code(Instruction instr, TextureType texture_type, bool depth_compare,
bool is_array, bool is_aoffi, bool is_ptp, bool is_bindless) {
ASSERT_MSG(!(is_aoffi && is_ptp), "AOFFI and PTP can't be enabled at the same time");
const std::size_t coord_count = GetCoordCount(texture_type);
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// First coordinate index is the gpr8 or gpr8 + 1 when arrays are used
const u64 coord_register = array_register + (is_array ? 1 : 0);
std::vector<Node> coords;
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(coord_register + i));
}
u64 parameter_register = instr.gpr20.Value();
const SamplerInfo info{texture_type, is_array, depth_compare, false};
const Sampler* sampler = is_bindless ? GetBindlessSampler(parameter_register++, info)
: GetSampler(instr.sampler, info);
Node4 values;
if (sampler == nullptr) {
for (u32 element = 0; element < values.size(); ++element) {
values[element] = Immediate(0);
}
return values;
}
std::vector<Node> aoffi, ptp;
if (is_aoffi) {
aoffi = GetAoffiCoordinates(GetRegister(parameter_register++), coord_count, true);
} else if (is_ptp) {
ptp = GetPtpCoordinates(
{GetRegister(parameter_register++), GetRegister(parameter_register++)});
}
Node dc;
if (depth_compare) {
dc = GetRegister(parameter_register++);
}
const Node component = is_bindless ? Immediate(static_cast<u32>(instr.tld4_b.component))
: Immediate(static_cast<u32>(instr.tld4.component));
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{
*sampler, GetRegister(array_register), dc, aoffi, ptp, {}, {}, {}, component, element};
values[element] = Operation(OperationCode::TextureGather, meta, std::move(coords_copy));
}
return values;
}
Node4 ShaderIR::GetTldCode(Tegra::Shader::Instruction instr) {
const auto texture_type{instr.tld.texture_type};
const bool is_array{instr.tld.is_array};
const bool lod_enabled{instr.tld.GetTextureProcessMode() == TextureProcessMode::LL};
const std::size_t coord_count{GetCoordCount(texture_type)};
u64 gpr8_cursor{instr.gpr8.Value()};
const Node array_register{is_array ? GetRegister(gpr8_cursor++) : nullptr};
std::vector<Node> coords;
coords.reserve(coord_count);
for (std::size_t i = 0; i < coord_count; ++i) {
coords.push_back(GetRegister(gpr8_cursor++));
}
u64 gpr20_cursor{instr.gpr20.Value()};
// const Node bindless_register{is_bindless ? GetRegister(gpr20_cursor++) : nullptr};
const Node lod{lod_enabled ? GetRegister(gpr20_cursor++) : Immediate(0u)};
// const Node aoffi_register{is_aoffi ? GetRegister(gpr20_cursor++) : nullptr};
// const Node multisample{is_multisample ? GetRegister(gpr20_cursor++) : nullptr};
const auto& sampler = *GetSampler(instr.sampler);
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, array_register, {}, {}, {}, {}, {}, lod, {}, element};
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
}
return values;
}
Node4 ShaderIR::GetTldsCode(Instruction instr, TextureType texture_type, bool is_array) {
const Sampler& sampler = *GetSampler(instr.sampler);
const std::size_t type_coord_count = GetCoordCount(texture_type);
const bool lod_enabled = instr.tlds.GetTextureProcessMode() == TextureProcessMode::LL;
// If enabled arrays index is always stored in the gpr8 field
const u64 array_register = instr.gpr8.Value();
// if is array gpr20 is used
const u64 coord_register = is_array ? instr.gpr20.Value() : instr.gpr8.Value();
const u64 last_coord_register =
((type_coord_count > 2) || (type_coord_count == 2 && !lod_enabled)) && !is_array
? static_cast<u64>(instr.gpr20.Value())
: coord_register + 1;
std::vector<Node> coords;
for (std::size_t i = 0; i < type_coord_count; ++i) {
const bool last = (i == (type_coord_count - 1)) && (type_coord_count > 1);
coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
}
const Node array = is_array ? GetRegister(array_register) : nullptr;
// When lod is used always is in gpr20
const Node lod = lod_enabled ? GetRegister(instr.gpr20) : Immediate(0);
// Fill empty entries from the guest sampler
const std::size_t entry_coord_count = GetCoordCount(sampler.GetType());
if (type_coord_count != entry_coord_count) {
LOG_WARNING(HW_GPU, "Bound and built texture types mismatch");
// When the size is higher we insert zeroes
for (std::size_t i = type_coord_count; i < entry_coord_count; ++i) {
coords.push_back(GetRegister(Register::ZeroIndex));
}
// Then we ensure the size matches the number of entries (dropping unused values)
coords.resize(entry_coord_count);
}
Node4 values;
for (u32 element = 0; element < values.size(); ++element) {
auto coords_copy = coords;
MetaTexture meta{sampler, array, {}, {}, {}, {}, {}, lod, {}, element};
values[element] = Operation(OperationCode::TexelFetch, meta, std::move(coords_copy));
}
return values;
}
std::tuple<std::size_t, std::size_t> ShaderIR::ValidateAndGetCoordinateElement(
TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled,
std::size_t max_coords, std::size_t max_inputs) {
const std::size_t coord_count = GetCoordCount(texture_type);
std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0);
const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0);
if (total_coord_count > max_coords || total_reg_count > max_inputs) {
UNIMPLEMENTED_MSG("Unsupported Texture operation");
total_coord_count = std::min(total_coord_count, max_coords);
}
// 1D.DC OpenGL is using a vec3 but 2nd component is ignored later.
total_coord_count +=
(depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0;
return {coord_count, total_coord_count};
}
std::vector<Node> ShaderIR::GetAoffiCoordinates(Node aoffi_reg, std::size_t coord_count,
bool is_tld4) {
const std::array coord_offsets = is_tld4 ? std::array{0U, 8U, 16U} : std::array{0U, 4U, 8U};
const u32 size = is_tld4 ? 6 : 4;
const s32 wrap_value = is_tld4 ? 32 : 8;
const s32 diff_value = is_tld4 ? 64 : 16;
const u32 mask = (1U << size) - 1;
std::vector<Node> aoffi;
aoffi.reserve(coord_count);
const auto aoffi_immediate{
TrackImmediate(aoffi_reg, global_code, static_cast<s64>(global_code.size()))};
if (!aoffi_immediate) {
// Variable access, not supported on AMD.
LOG_WARNING(HW_GPU,
"AOFFI constant folding failed, some hardware might have graphical issues");
for (std::size_t coord = 0; coord < coord_count; ++coord) {
const Node value = BitfieldExtract(aoffi_reg, coord_offsets[coord], size);
const Node condition =
Operation(OperationCode::LogicalIGreaterEqual, value, Immediate(wrap_value));
const Node negative = Operation(OperationCode::IAdd, value, Immediate(-diff_value));
aoffi.push_back(Operation(OperationCode::Select, condition, negative, value));
}
return aoffi;
}
for (std::size_t coord = 0; coord < coord_count; ++coord) {
s32 value = (*aoffi_immediate >> coord_offsets[coord]) & mask;
if (value >= wrap_value) {
value -= diff_value;
}
aoffi.push_back(Immediate(value));
}
return aoffi;
}
std::vector<Node> ShaderIR::GetPtpCoordinates(std::array<Node, 2> ptp_regs) {
static constexpr u32 num_entries = 8;
std::vector<Node> ptp;
ptp.reserve(num_entries);
const auto global_size = static_cast<s64>(global_code.size());
const std::optional low = TrackImmediate(ptp_regs[0], global_code, global_size);
const std::optional high = TrackImmediate(ptp_regs[1], global_code, global_size);
if (!low || !high) {
for (u32 entry = 0; entry < num_entries; ++entry) {
const u32 reg = entry / 4;
const u32 offset = entry % 4;
const Node value = BitfieldExtract(ptp_regs[reg], offset * 8, 6);
const Node condition =
Operation(OperationCode::LogicalIGreaterEqual, value, Immediate(32));
const Node negative = Operation(OperationCode::IAdd, value, Immediate(-64));
ptp.push_back(Operation(OperationCode::Select, condition, negative, value));
}
return ptp;
}
const u64 immediate = (static_cast<u64>(*high) << 32) | static_cast<u64>(*low);
for (u32 entry = 0; entry < num_entries; ++entry) {
s32 value = (immediate >> (entry * 8)) & 0b111111;
if (value >= 32) {
value -= 64;
}
ptp.push_back(Immediate(value));
}
return ptp;
}
} // namespace VideoCommon::Shader
|