1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
/******************************************************************************
*
* This is a library for the ADS1115 A/D Converter
*
* You'll find several example sketches which should enable you to use the library.
*
* You are free to use it, change it or build on it. In case you like it, it would
* be cool if you give it a star.
*
* If you find bugs, please inform me!
*
* Written by Wolfgang (Wolle) Ewald
* https://wolles-elektronikkiste.de/en/ads1115-a-d-converter-with-amplifier (English)
* https://wolles-elektronikkiste.de/ads1115 (German)
*
*
******************************************************************************/
#ifndef ADS1115_WE_H_
#define ADS1115_WE_H_
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#include "ADS1115_config.h"
#ifdef USE_TINY_WIRE_M_
#include <TinyWireM.h>
#endif
#ifndef USE_TINY_WIRE_M_
#include <Wire.h>
#endif
typedef enum ADS1115_COMP_QUE {
ADS1115_ASSERT_AFTER_1 = 0x0000,
ADS1115_ASSERT_AFTER_2 = 0x0001,
ADS1115_ASSERT_AFTER_4 = 0x0002,
ADS1115_DISABLE_ALERT = 0x0003
} compQue;
typedef enum ADS1115_LATCH {
ADS1115_LATCH_DISABLED = 0x0000,
ADS1115_LATCH_ENABLED = 0x0004,
} latch;
typedef enum ADS1115_ALERT_POL {
ADS1115_ACT_LOW = 0x0000,
ADS1115_ACT_HIGH = 0x0008
} alertPol;
typedef enum ADS1115_COMP_MODE{
ADS1115_MAX_LIMIT = 0x0000,
ADS1115_WINDOW = 0x0010
} compMode;
typedef enum ADS1115_CONV_RATE{
ADS1115_8_SPS = 0x0000,
ADS1115_16_SPS = 0x0020,
ADS1115_32_SPS = 0x0040,
ADS1115_64_SPS = 0x0060,
ADS1115_128_SPS = 0x0080,
ADS1115_250_SPS = 0x00A0,
ADS1115_475_SPS = 0x00C0,
ADS1115_860_SPS = 0x00E0
} convRate;
typedef enum ADS1115_MEASURE_MODE{
ADS1115_CONTINOUS = 0x0000, // keeping misspelled enum for backwards compatibility.
ADS1115_CONTINUOUS = 0x0000,
ADS1115_SINGLE = 0x0100
} measureMode;
typedef enum ADS1115_RANGE{
ADS1115_RANGE_6144 = 0x0000,
ADS1115_RANGE_4096 = 0x0200,
ADS1115_RANGE_2048 = 0x0400,
ADS1115_RANGE_1024 = 0x0600,
ADS1115_RANGE_0512 = 0x0800,
ADS1115_RANGE_0256 = 0x0A00,
} range;
typedef enum ADS1115_MUX{
ADS1115_COMP_0_1 = 0x0000,
ADS1115_COMP_0_3 = 0x1000,
ADS1115_COMP_1_3 = 0x2000,
ADS1115_COMP_2_3 = 0x3000,
ADS1115_COMP_0_GND = 0x4000,
ADS1115_COMP_1_GND = 0x5000,
ADS1115_COMP_2_GND = 0x6000,
ADS1115_COMP_3_GND = 0x7000
} mux;
#define ADS1115_COMP_INC 0x1000 // increment to next channel
typedef enum ADS1115_STATUS_OR_START{
ADS1115_BUSY = 0x0000,
ADS1115_START_ISREADY = 0x8000
} statusOrStart;
class ADS1115_WE
{
public:
/* registers */
static constexpr uint8_t ADS1115_CONV_REG {0x00}; // Conversion Register
static constexpr uint8_t ADS1115_CONFIG_REG {0x01}; // Configuration Register
static constexpr uint8_t ADS1115_LO_THRESH_REG {0x02}; // Low Threshold Register
static constexpr uint8_t ADS1115_HI_THRESH_REG {0x03}; // High Threshold Register
/* other */
static constexpr uint16_t ADS1115_REG_FACTOR {32768};
static constexpr uint16_t ADS1115_REG_RESET_VAL {0x8583};
#ifndef USE_TINY_WIRE_M_
ADS1115_WE(const uint8_t addr = 0x48) : _wire{&Wire}, i2cAddress{addr} {}
ADS1115_WE(TwoWire *w, const uint8_t addr = 0x48) : _wire{w}, i2cAddress{addr} {}
#else
ADS1115_WE(const uint8_t addr = 0x48) : i2cAddress{addr} {}
#endif
void reset();
bool init();
/* Set number of conversions after which the alert pin will be active
* - or you can disable the alert
*
* ADS1115_ASSERT_AFTER_1 -> after 1 conversion
* ADS1115_ASSERT_AFTER_2 -> after 2 conversions
* ADS1115_ASSERT_AFTER_4 -> after 4 conversions
* ADS1115_DISABLE_ALERT -> disable comparator // alert pin (default)
*/
void setAlertPinMode(ADS1115_COMP_QUE mode);
/* Enable or disable latch. If latch is enabled the alarm pin will be active until the
* conversion register is read (getResult functions). If disabled the alarm pin will be
* deactivated with next value within limits.
*
* ADS1115_LATCH_DISABLED (default)
* ADS1115_LATCH_ENABLED
*/
void setAlertLatch(ADS1115_LATCH latch);
/* Sets the alert pin polarity if active:
*
* Enable or disable latch. If latch is enabled the alarm pin will be active until the
* conversion register is read (getResult functions). If disabled the alarm pin will be
* deactivated with next value within limits.
*
* ADS1115_ACT_LOW -> active low (default)
* ADS1115_ACT_HIGH -> active high
*/
void setAlertPol(ADS1115_ALERT_POL polarity);
/* Choose maximum limit or maximum and minimum alert limit (window)in Volt - alert pin will
* be active when measured values are beyond the maximum limit or outside the window
* Upper limit first: setAlertLimit_V(MODE, maximum, minimum)
* In max limit mode the minimum value is the limit where the alert pin will be deactivated (if
* not latched)
*
* ADS1115_MAX_LIMIT
* ADS1115_WINDOW
*/
void setAlertModeAndLimit_V(ADS1115_COMP_MODE mode, float hithres, float lothres);
/* Set the conversion rate in SPS (samples per second)
* Options should be self-explaining:
*
* ADS1115_8_SPS
* ADS1115_16_SPS
* ADS1115_32_SPS
* ADS1115_64_SPS
* ADS1115_128_SPS (default)
* ADS1115_250_SPS
* ADS1115_475_SPS
* ADS1115_860_SPS
*/
void setConvRate(ADS1115_CONV_RATE rate);
/* returns the conversion rate */
convRate getConvRate();
/* Set continuous or single shot mode:
*
* ADS1115_CONTINUOUS -> continuous mode
* ADS1115_SINGLE -> single shot mode (default)
*/
void setMeasureMode(ADS1115_MEASURE_MODE mode);
/* Set the voltage range of the ADC to adjust the gain:
* Please note that you must not apply more than VDD + 0.3V to the input pins!
*
* ADS1115_RANGE_6144 -> +/- 6144 mV
* ADS1115_RANGE_4096 -> +/- 4096 mV
* ADS1115_RANGE_2048 -> +/- 2048 mV (default)
* ADS1115_RANGE_1024 -> +/- 1024 mV
* ADS1115_RANGE_0512 -> +/- 512 mV
* ADS1115_RANGE_0256 -> +/- 256 mV
*/
void setVoltageRange_mV(ADS1115_RANGE range);
/* Set the voltage range automatically
* 1) changes into maximum range and continuous mode
* 2) measures the voltage
* 3) chooses the smallest range in which the measured voltage is <80%
* of the range's maximum
* 4) switches back to single shot mode if it was in this mode before
*
* Please be aware that the procedure takes the the time needed for several conversions.
* You should ony use it in case you expect stable or slowly changing voltages.
*/
void setAutoRange();
/* Set the automatic voltage range permanantly, but the range will only be changed if the
* measured value is outside 30 - 80% of the maximum value of the current range.
* Therefore this method is faster than setAutoRange().
*/
void setPermanentAutoRangeMode(bool autoMode);
/* Set the inputs to be compared
*
* ADS1115_COMP_0_1 -> compares 0 with 1 (default)
* ADS1115_COMP_0_3 -> compares 0 with 3
* ADS1115_COMP_1_3 -> compares 1 with 3
* ADS1115_COMP_2_3 -> compares 2 with 3
* ADS1115_COMP_0_GND -> compares 0 with GND
* ADS1115_COMP_1_GND -> compares 1 with GND
* ADS1115_COMP_2_GND -> compares 2 with GND
* ADS1115_COMP_3_GND -> compares 3 with GND
*/
void setCompareChannels(ADS1115_MUX mux);
/* Set to channel (0-3) in single ended mode
*/
void setSingleChannel(size_t channel);
bool isBusy();
void startSingleMeasurement();
float getResult_V();
float getResult_mV();
/* Get the raw result from the conversion register:
* The conversion register contains the conversion result of the amplified (!)
* voltage. This means the value depends on the voltage as well as on the
* voltage range. E.g. if the voltage range is 6144 mV (ADS1115_RANGE_6144),
* +32767 is 6144 mV; if the range is 4096 mV, +32767 is 4096 mV, and so on.
*/
int16_t getRawResult();
/* Scaling of the result to a different range:
* The results in the conversion register are in a range of -32767 to +32767
* You might want to receive the result in a different scale, e.g. -1023 to 1023.
* For -1023 to 1023, and if you have chosen e.g. ADS1115_RANGE_4096, 0 Volt would
* give 0 as result and 4096 mV would give 1023. -4096 mV would give -1023.
*/
int16_t getResultWithRange(int16_t min, int16_t max);
/* Scaling of the result to a different range plus scaling to a voltage range:
* You can use this variant if you also want to scale to a voltage range. E.g. in
* in order to get results equivalent to an Arduino UNO (10 bit, 5000 mV range), you
* would choose getResultWithRange(-1023, 1023, 5000). A difference to the Arduino
* UNO is that you can measure negative voltages.
* You have to ensure that the voltage range you scale to is smaller than the
* measuring voltage range.
*/
int16_t getResultWithRange(int16_t min, int16_t max, int16_t maxVoltage);
/* This function returns the voltage range ADS1115_RANGE_XXXX in Millivolt */
uint16_t getVoltageRange_mV();
/* With this function the alert pin will be active, when a conversion is ready.
* In order to deactivate, use the setAlertLimit_V function
*/
void setAlertPinToConversionReady();
void clearAlert();
protected:
#ifndef USE_TINY_WIRE_M_
TwoWire *_wire;
#endif
uint16_t voltageRange;
ADS1115_MEASURE_MODE deviceMeasureMode;
uint8_t i2cAddress;
bool autoRangeMode;
void delayAccToRate(convRate cr);
int16_t calcLimit(float rawLimit);
uint8_t writeRegister(uint8_t reg, uint16_t val);
uint16_t readRegister(uint8_t reg);
};
#endif
|