diff options
author | Anton Luka Šijanec <anton@sijanec.eu> | 2024-08-08 23:27:19 +0200 |
---|---|---|
committer | Anton Luka Šijanec <anton@sijanec.eu> | 2024-08-08 23:27:19 +0200 |
commit | d60d5571a193d448bf3ced85a873fd33333a1765 (patch) | |
tree | ec1fabe82223c9e471750dc7ad7f466fd482b672 /šola/ana1 | |
parent | ana1 učenje vrsar lahko noč (diff) | |
download | r-d60d5571a193d448bf3ced85a873fd33333a1765.tar r-d60d5571a193d448bf3ced85a873fd33333a1765.tar.gz r-d60d5571a193d448bf3ced85a873fd33333a1765.tar.bz2 r-d60d5571a193d448bf3ced85a873fd33333a1765.tar.lz r-d60d5571a193d448bf3ced85a873fd33333a1765.tar.xz r-d60d5571a193d448bf3ced85a873fd33333a1765.tar.zst r-d60d5571a193d448bf3ced85a873fd33333a1765.zip |
Diffstat (limited to 'šola/ana1')
-rw-r--r-- | šola/ana1/teor.lyx | 4075 |
1 files changed, 4063 insertions, 12 deletions
diff --git a/šola/ana1/teor.lyx b/šola/ana1/teor.lyx index 6ff52cd..28f0397 100644 --- a/šola/ana1/teor.lyx +++ b/šola/ana1/teor.lyx @@ -66,11 +66,20 @@ theorems-ams-extended \output_sync 0 \bibtex_command default \index_command default -\float_placement class +\float_placement H \float_alignment class \paperfontsize default \spacing single -\use_hyperref false +\use_hyperref true +\pdf_bookmarks true +\pdf_bookmarksnumbered false +\pdf_bookmarksopen false +\pdf_bookmarksopenlevel 1 +\pdf_breaklinks false +\pdf_pdfborder false +\pdf_colorlinks false +\pdf_backref false +\pdf_pdfusetitle true \papersize default \use_geometry true \use_package amsmath 1 @@ -2399,8 +2408,20 @@ Naj bo zato je tudi sama omejena. \end_layout -\begin_layout Claim* -Naj bosta +\begin_layout Theorem* +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hypertarget{pmkdlim}{Naj bosta} +\end_layout + +\end_inset + + \begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ \end_inset @@ -3902,11 +3923,6 @@ Podzaporedje zaporedja \end_inset strogo naraščajoča funkcija. - Definicijsko območje -\begin_inset Formula $\varphi$ -\end_inset - - mora vsebovati števno neskončno elementov. \end_layout \begin_layout Theorem* @@ -4206,7 +4222,7 @@ status open \begin_layout Plain Layout Racionalnih števil je števno mnogo, - zato jih lahko linearno uredimo in oštevilčimo + zato jih lahko linearno uredimo in oštevilčimo. \end_layout \end_inset @@ -4260,12 +4276,4047 @@ Limita je stakališče, . \end_layout +\begin_layout Theorem* +\begin_inset Formula $S$ +\end_inset + + je stekališče +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\Leftrightarrow S$ +\end_inset + + je limita nekega podzaporedja +\begin_inset Formula $a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Dokazujemo ekvivalenco. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + Očitno. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Definirajmo +\begin_inset Formula $\forall m\in\mathbb{N}:U_{m}\coloneqq\left(S-\frac{1}{m},S+\frac{1}{m}\right)$ +\end_inset + +. + Ker je +\begin_inset Formula $S$ +\end_inset + + stekališče, + +\begin_inset Formula $\forall m\in\mathbb{N}\exists a_{k_{m}}\in U_{m}$ +\end_inset + +. + Podzaporedje +\begin_inset Formula $\left(a_{k_{m}}\right)_{m\in\mathbb{N}}$ +\end_inset + + konvergira k +\begin_inset Formula $S$ +\end_inset + +, + kajti +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a_{k_{n}}-S\right|<\frac{1}{n}<\varepsilon$ +\end_inset + +. +\end_layout + +\end_deeper \begin_layout Corollary* -sssssssssss +Če je +\begin_inset Formula $L$ +\end_inset + + limita nekega zaporedja, + je +\begin_inset Formula $L$ +\end_inset + + edino njegovo stekališče. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $a_{n}\to L$ +\end_inset + +. + Naj bo +\begin_inset Formula $S$ +\end_inset + + stekališče za +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +. + Po izreku zgoraj je +\begin_inset Formula $S$ +\end_inset + + limita nekega podzaporedja +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +. + Toda limita vsakega podzaporedja je enaka limiti zaporedja, + iz katerega to podzaporedje izhaja, + če ta limita obstaja. + Potemtakem je +\begin_inset Formula $S=L$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hypertarget{bw}{Bolzano-Weierstraß} +\end_layout + +\end_inset + +. + Eksistenčni izrek. + Vsako omejeno zaporedje v realnih številih ima kakšno stekališče v +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Označimo +\begin_inset Formula $m_{0}\coloneqq\inf_{n\in\mathbb{N}}a_{n},M_{0}\coloneqq\sup_{n\in\mathbb{N}}a_{n},I_{0}\coloneqq\left[m_{0},M_{0}\right]$ +\end_inset + +. + Očitno je +\begin_inset Formula $\forall n\in\mathbb{N}:a_{n}\in I_{0}$ +\end_inset + +. + Interval +\begin_inset Formula $I_{0}$ +\end_inset + + razdelimo na dve polovici: + +\begin_inset Formula $I_{0}=\left[m_{0},\frac{m_{0}+M_{0}}{2}\right]\cup\left[\frac{m_{0}+M_{0}}{2},M_{0}\right]$ +\end_inset + +. + Izberemo polovico (vsaj ena obstaja), + v kateri leži neskončno mnogo členov, + in jo označimo z +\begin_inset Formula $I_{1}$ +\end_inset + +. + Spet jo razdelimo na pol in z +\begin_inset Formula $I_{2}$ +\end_inset + + označimo tisto polovico, + v kateri leži neskončno mnogo členov. + Postopek ponavljamo in dobimo zaporedje zaprtih intervalov +\begin_inset Formula $\left(I_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + in velja +\begin_inset Formula $I_{0}\supset I_{1}\supset I_{2}\supset\cdots$ +\end_inset + + ter +\begin_inset Formula $\left|I_{n}\right|=2^{-n}\left|I_{0}\right|$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Označimo sedaj +\begin_inset Formula $I_{n}\eqqcolon\left[l_{n},d_{n}\right]$ +\end_inset + +. + Iz konstrukcije je očitno, + da +\begin_inset Formula $\left(l_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + narašča in +\begin_inset Formula $\left(d_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + pada ter da sta obe zaporedji omejeni. + Posledično +\begin_inset Formula $\exists l\coloneqq\lim_{n\to\infty}l_{n},d\coloneqq\lim_{n\to\infty}d_{n}$ +\end_inset + +. + Iz +\begin_inset Formula $l_{n}\leq l\leq d\leq d_{n}$ +\end_inset + + sledi ocena +\begin_inset Formula $d-l\leq l_{n}-d_{n}=\left|I_{n}\right|=2^{-n}\left|I_{0}\right|$ +\end_inset + +, + kar konvergira k 0. + Posledično +\begin_inset Formula $d=l$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Treba je pokazati še, + da je +\begin_inset Formula $d=l$ +\end_inset + + stekališče za +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +. + Vzemimo poljuben +\begin_inset Formula $\varepsilon>0$ +\end_inset + +. + Ker je +\begin_inset Formula $l=\lim_{n\to\infty}l_{n}\Rightarrow\exists n_{1}\in\mathbb{N}\ni:l_{n_{1}}>l-\varepsilon$ +\end_inset + + in ker je +\begin_inset Formula $d=\lim_{n\to\infty}d_{n}\Rightarrow\exists n_{2}\in\mathbb{N}\ni:d_{n_{2}}<d-\varepsilon$ +\end_inset + +. + Torej +\begin_inset Formula $\left[l_{n_{1}},d_{n_{2}}\right]\subset\left(l-\varepsilon,d+\varepsilon\right)$ +\end_inset + +. + Torej za +\begin_inset Formula $n_{0}\coloneqq\max\left\{ n_{1},n_{2}\right\} $ +\end_inset + + velja +\begin_inset Formula $I_{n_{0}}=\left[l_{n_{0}},d_{n_{n}}\right]\subset\left(l-\varepsilon,d+\varepsilon\right)$ +\end_inset + +. + Ker +\begin_inset Formula $I_{n_{0}}$ +\end_inset + + po konstrukciji vsebuje neskončno mnogo elementov, + jih torej tudi +\begin_inset Formula $\left(l-\varepsilon,d+\varepsilon\right)$ +\end_inset + + oziroma poljubno majhna okolica +\begin_inset Formula $d=l$ +\end_inset + +, + torej je +\begin_inset Formula $d=l$ +\end_inset + + stekališče za +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +. \end_layout \begin_layout Corollary* -sssssssssss +Če je +\begin_inset Formula $s\in\mathbb{R}$ +\end_inset + + edino stekališče omejenega zaporedja +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +, + tedaj je +\begin_inset Formula $s=\lim_{n\to\infty}a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Naj bo +\begin_inset Formula $s$ +\end_inset + + stekališče +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +. + PDDRAA +\begin_inset Formula $a_{n}\not\to s$ +\end_inset + +. + Tedaj +\begin_inset Formula $\exists\varepsilon>0\ni:$ +\end_inset + + izven +\begin_inset Formula $\left(s-\varepsilon,s+\varepsilon\right)$ +\end_inset + + se nahaja neskončno mnogo členov zaporedja. + Ti členi sami zase tvorijo omejeno zaporedje, + ki ima po +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{bw}{B.-W.} +\end_layout + +\end_inset + + izreku stekališče. + Slednje gotovo ne more biti enako +\begin_inset Formula $s$ +\end_inset + +, + torej imamo vsaj dve stekališči, + kar je v je v +\begin_inset Formula $\rightarrow\!\leftarrow$ +\end_inset + + s predpostavko. +\end_layout + +\begin_layout Definition* +Pravimo, + da ima realno zaporedje: +\end_layout + +\begin_deeper +\begin_layout Itemize +stekališče v +\begin_inset Formula $\infty$ +\end_inset + +, + če +\begin_inset Formula $\forall M>0:\left(M,\infty\right)$ +\end_inset + + vsebuje neskončno mnogo členov zapopredja +\end_layout + +\begin_layout Itemize +limito v +\begin_inset Formula $\infty$ +\end_inset + +, + če +\begin_inset Formula $\forall M>0:\left(M,\infty\right)$ +\end_inset + + vsebuje vse člene zaporedja od nekega indeksa dalje +\end_layout + +\begin_layout Standard +in podobno za +\begin_inset Formula $-\infty$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Remark* +Povezava s pojmom realnega stekališča/limite: + okolice +\begin_inset Quotes gld +\end_inset + +točke +\begin_inset Quotes grd +\end_inset + + +\begin_inset Formula $\infty$ +\end_inset + + so intervali oblike +\begin_inset Formula $\left(M,\infty\right)$ +\end_inset + +. + To je smiselno, + saj biti +\begin_inset Quotes gld +\end_inset + +blizu +\begin_inset Formula $\infty$ +\end_inset + + +\begin_inset Quotes grd +\end_inset + + pomeni bizi zelo velik, + kar je ravno biti v +\begin_inset Formula $\left(M,\infty\right)$ +\end_inset + +za poljubno velik +\begin_inset Formula $M$ +\end_inset + +. + +\begin_inset Quotes gld +\end_inset + +Okolica točke +\begin_inset Formula $\infty$ +\end_inset + + +\begin_inset Quotes grd +\end_inset + + so torej vsi intervali oblike +\begin_inset Formula $\left(M,\infty\right)$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Limes superior in limes inferior +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +realno zaporedje. + Tvorimo novo zaporedje +\begin_inset Formula $s_{n}\coloneqq\sup\left\{ a_{k};k\geq n\right\} $ +\end_inset + +. + Očitno je padajoče ( +\begin_inset Formula $s_{1}\geq s_{2}\geq s_{3}\geq\cdots$ +\end_inset + +), + ker je supremum množice vsaj supremum njene stroge podmnožice. + Zaporedje +\begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + ima limito, + ki ji rečemo limes superior oziroma zgornja limita zaporedja +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + in označimo +\begin_inset Formula $\limsup_{n\to\infty}a_{n}=\overline{\lim_{n\to\infty}}a_{n}\coloneqq\lim_{n\to\infty}s_{n}$ +\end_inset + + in velja, + da leži v +\begin_inset Formula $\mathbb{R}\cup\left\{ -\infty,\infty\right\} $ +\end_inset + +. + Podobno definiramo tudi limes inferior oz. + spodnjo limito zaporedja: + +\begin_inset Formula $\liminf_{n\to\infty}a_{n}=\underline{\lim_{n\to\infty}}a_{n}\coloneqq\lim_{n\to\infty}\left(\inf_{k\geq n}a_{k}\right)=\sup_{n\in\mathbb{N}}\left(\inf_{k\geq n}a_{k}\right)$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +Za razliko od običajne limite, + ki lahko ne obstaja, + +\begin_inset Formula $\limsup$ +\end_inset + + in +\begin_inset Formula $\liminf$ +\end_inset + + vedno obstajata. +\end_layout + +\begin_layout Claim* +\begin_inset Formula $\limsup_{n\to\infty}a_{n}$ +\end_inset + + je največje stekališče zaporedja +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + in +\begin_inset Formula $\liminf_{n\to\infty}$ +\end_inset + + najmanjše. +\end_layout + +\begin_layout Proof +Označimo +\begin_inset Formula $s\coloneqq\limsup_{n\to\infty}a_{n}$ +\end_inset + +. + Za +\begin_inset Formula $\liminf$ +\end_inset + + je dokaz analogen in ga ne bomo pisali. + Dokazujemo, + da je +\begin_inset Formula $s$ +\end_inset + + stekališče in +\begin_inset Formula $\forall t>s:t$ +\end_inset + + ni stekališče. + Ločimo primere: +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $s\in\mathbb{R}$ +\end_inset + + Naj bo +\begin_inset Formula $\varepsilon>0$ +\end_inset + + poljuben. + Ker +\begin_inset Foot +status open + +\begin_layout Plain Layout +Infimum padajočega konvergentnega zaporedja je očitno njegova limita. +\end_layout + +\end_inset + + je +\begin_inset Formula $s=\inf s_{n}$ +\end_inset + +, + +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:s_{n_{0}}\in[s,s+\varepsilon)$ +\end_inset + +. + Ker +\begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + pada proti +\begin_inset Formula $s$ +\end_inset + +, + sledi +\begin_inset Formula $\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow s_{n}\in[s,s+\varepsilon)$ +\end_inset + +. + Po definiciji +\begin_inset Formula $s_{n}$ +\end_inset + + velja +\begin_inset Formula $\forall n\in\mathbb{N}\exists N\left(n\right)\geq n\ni:s_{n}-\varepsilon<a_{N\left(n\right)}$ +\end_inset + +. + Torej imamo +\begin_inset Formula $s-\varepsilon\leq s_{n}-\varepsilon<a_{N\left(n\right)}\leq s_{n}<s+\varepsilon$ +\end_inset + + (zadnji neenačaj za +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +), + skratka +\begin_inset Formula $a_{N\left(n\right)}-s<\varepsilon$ +\end_inset + + oziroma +\begin_inset Formula $\forall n\geq n_{0}:\left|a_{N\left(n\right)}-s\right|<\varepsilon$ +\end_inset + +. + Ker je +\begin_inset Formula $N\left(n\right)\geq n$ +\end_inset + +, + je +\begin_inset Formula $\left\{ N\left(n\right);n\in\mathbb{N}\right\} $ +\end_inset + + neskončna množica, + torej je neskončno mnogo členov v poljubni okolici +\begin_inset Formula $s$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Treba je dokazati še, + da +\begin_inset Formula $\forall t>s:t$ +\end_inset + + ni stekališče. + Naj bo +\begin_inset Formula $t>s$ +\end_inset + +. + Označimo +\begin_inset Formula $\delta\coloneqq t-s>0$ +\end_inset + +. + Po definiciji +\begin_inset Foot +status open + +\begin_layout Plain Layout +\begin_inset Formula $s$ +\end_inset + + je limita zaporedja +\begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +, + zato v poljubno majhni okolici obstaja tak +\begin_inset Formula $s_{n_{1}}$ +\end_inset + +. + +\begin_inset Formula $s_{n_{1}}$ +\end_inset + + torej tu najdemo v +\begin_inset Formula $[s,s+\frac{\delta}{2})$ +\end_inset + +. +\end_layout + +\end_inset + + +\begin_inset Formula $s$ +\end_inset + + +\begin_inset Formula $\exists n_{1}\in\mathbb{N}\ni:s\leq s_{n_{1}}<s+\frac{\delta}{2}<s+t$ +\end_inset + +. + Ker +\begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + pada proti +\begin_inset Formula $s$ +\end_inset + +, + sledi +\begin_inset Formula $\forall n\geq n_{1}:s\leq s_{n}<s+\frac{\delta}{2}$ +\end_inset + +. + Po definiciji +\begin_inset Foot +status open + +\begin_layout Plain Layout +\begin_inset Formula $s_{n}$ +\end_inset + + je supremum členov od vključno +\begin_inset Formula $n$ +\end_inset + + dalje +\end_layout + +\end_inset + + +\begin_inset Formula $s_{n}$ +\end_inset + + sledi +\begin_inset Formula $\forall n\geq n_{1}:a_{n}\leq s+\frac{\delta}{2}$ +\end_inset + +. + Za takšne +\begin_inset Formula $n$ +\end_inset + + je +\begin_inset Formula $\left|t-a_{n}\right|=t-a_{n}\geq t-\left(s+\frac{\delta}{2}\right)=\frac{\delta}{2}$ +\end_inset + +. + Torej v +\begin_inset Formula $\frac{\delta}{2}-$ +\end_inset + +okolici točke +\begin_inset Formula $t$ +\end_inset + + leži kvečjemu končno mnogo členov zaporedja oziroma členi +\begin_inset Formula $\left(a_{1},a_{2},\dots,a_{n_{1}-1}\right)$ +\end_inset + +. + Torej +\begin_inset Formula $t$ +\end_inset + + ni stekališče za +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $s=\infty$ +\end_inset + + Naj bo +\begin_inset Formula $M>0$ +\end_inset + + poljuben. + Ker je +\begin_inset Formula $s=\inf s_{n}$ +\end_inset + +, + velja +\begin_inset Formula $\forall n\in\mathbb{N}:s_{n}=\infty$ +\end_inset + +. + Po definiciji +\begin_inset Formula $s_{n}=\infty$ +\end_inset + + velja +\begin_inset Formula $\forall n\in\mathbb{N}\exists N\left(n\right):a_{N\left(n\right)}>M$ +\end_inset + +. + Ker je +\begin_inset Formula $N\left(n\right)\geq n$ +\end_inset + +, + je +\begin_inset Formula $\left\{ N\left(n\right);n\in\mathbb{N}\right\} $ +\end_inset + + neskončna množica, + torej je neskončno mnogo členov v +\begin_inset Formula $\left(M,\infty\right)$ +\end_inset + + za poljuben +\begin_inset Formula $M$ +\end_inset + +, + torej je +\begin_inset Formula $s=\infty$ +\end_inset + + res stekališče. +\end_layout + +\begin_deeper +\begin_layout Standard +Večjih stekališč od +\begin_inset Formula $\infty$ +\end_inset + + očitno ni. +\end_layout + +\end_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $s=-\infty$ +\end_inset + + Naj bo +\begin_inset Formula $m<0$ +\end_inset + + poljuben. + Ker je +\begin_inset Formula $s=\inf s_{n}$ +\end_inset + +, + +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:s_{n_{0}}\in\left(-\infty,m\right)$ +\end_inset + + Ker +\begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + pada proti +\begin_inset Formula $s=-\infty$ +\end_inset + +, + sledi +\begin_inset Formula $\forall n\in\mathbb{N}:n\geq n_{0}:s_{n}\in\left(-\infty,m\right)$ +\end_inset + +. + Po definiciji +\begin_inset Formula $s_{n}$ +\end_inset + + velja +\begin_inset Formula $\forall n\in\mathbb{N}:a_{n}\in\left(-\infty,m\right)$ +\end_inset + +. + Ker je za poljuben +\begin_inset Formula $m$ +\end_inset + + neskončno mnogo členov v +\begin_inset Formula $\left(-\infty,m\right)$ +\end_inset + +, + je +\begin_inset Formula $s=-\infty$ +\end_inset + + res stekališče. +\end_layout + +\end_deeper +\begin_layout Subsection +Cauchyjev pogoj +\end_layout + +\begin_layout Definition* +Zaporedje +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + ustreza Cauchyjevemu pogoju (oz. + je Cauchyjevo), + če +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\ni:\forall m,n\in\mathbb{N}:m,n\geq n_{0}\Rightarrow\left|a_{m}-a_{n}\right|<\varepsilon$ +\end_inset + +. + ZDB Dovolj pozni členi so si poljubno blizu. +\end_layout + +\begin_layout Claim* +Zaporedje v +\begin_inset Formula $\mathbb{R}$ +\end_inset + + je konvergentno +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + je Cauchyjevo. +\end_layout + +\begin_layout Proof +Dokazujemo ekvivalenco. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Če +\begin_inset Formula $a_{n}\to L$ +\end_inset + +, + tedaj +\begin_inset Formula $\left|a_{m}-a_{n}\right|=\left|\left(a_{m}-L\right)+\left(L-a_{n}\right)\right|\leq\left|a_{m}-\varepsilon\right|+\left|a_{n}-\varepsilon\right|$ +\end_inset + +. + Cauchyjev pogoj sledi iz definicije limite za +\begin_inset Formula $\frac{\varepsilon}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + Če je zaporedje Cauchyjevo, + je omejeno: + +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:\forall m,n\in\mathbb{N}:m,n\geq n_{0}\Rightarrow\left|a_{m}-a_{n}\right|\leq1$ +\end_inset + +. + V posebnem, + +\begin_inset Formula $m=n_{0}$ +\end_inset + +, + +\begin_inset Formula $\left|a_{n_{0}}-a_{n}\right|\leq1$ +\end_inset + + oziroma +\begin_inset Formula $\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow a_{n}\in\left[a_{n_{0}}-1,a_{n_{0}}+1\right]$ +\end_inset + +. + Preostali členi tvorijo končno veliko množico, + ki ima +\begin_inset Formula $\min$ +\end_inset + + in +\begin_inset Formula $\max$ +\end_inset + +, + torej je +\begin_inset Formula $\left\{ a_{k};k\in\mathbb{N}\right\} =\left\{ a_{1},a_{2},\dots,a_{n_{0}-1}\right\} \cup\left\{ a_{k};k\in\mathbb{N},k\geq n_{0}\right\} $ +\end_inset + + tudi omejena. + Po +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{bw}{izreku od prej} +\end_layout + +\end_inset + + sledi, + da ima zaporedje stekališče +\begin_inset Formula $s$ +\end_inset + +. + Dokažimo, + da je +\begin_inset Formula $s=\lim_{n\to\infty}a_{n}$ +\end_inset + +. + Vzemimo poljuben +\begin_inset Formula $\varepsilon>0$ +\end_inset + +. + Ker je +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + Cauchyjevo, + +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\ni:\forall m,n\in\mathbb{N}:m,n\geq n_{0}\Rightarrow\left|a_{m}-a_{n}\right|<\frac{\varepsilon}{2}$ +\end_inset + +. + Po definiciji +\begin_inset Formula $s$ +\end_inset + + +\begin_inset Formula $\exists n_{1}\geq n_{0}\ni:\left|a_{n_{1}}-s\right|<\frac{\varepsilon}{2}$ +\end_inset + +. + Sledi +\begin_inset Formula $\forall n\geq n_{0}:\left|a_{n}-s\right|=\left|a_{n}-s+s-a_{n_{1}}\right|\leq\left|a_{n}-s\right|+\left|s-a_{n_{1}}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Remark* +Moč izreka je v tem, + da lahko konvergenco preverjamo tudi tedaj, + ko nimamo kandidatov za limito. +\end_layout + +\begin_layout Section +Številske vrste +\end_layout + +\begin_layout Standard +Kako sešteti neskončno mnogo števil? + Nadgradimo pristop končnih vsot na neskončne vsote! +\end_layout + +\begin_layout Definition* +Imejmo zaporedje +\begin_inset Formula $\left(a_{k}\right)_{k\in\mathbb{N}},a_{k}\in\mathbb{R}$ +\end_inset + +. + Izraz +\begin_inset Formula $\sum_{j=1}^{\infty}a_{j}$ +\end_inset + + se imenuje vrsta s členi +\begin_inset Formula $a_{j}$ +\end_inset + +. + Pomen izraza opredelimo na naslednjo način: +\end_layout + +\begin_layout Definition* +Tvorimo novo zaporedje, + pravimo mu zaporedje delnih vsot vrste: + +\begin_inset Formula $s_{1}=a_{1}$ +\end_inset + +, + +\begin_inset Formula $s_{2}=a_{1}+a_{2}$ +\end_inset + +, + +\begin_inset Formula $s_{3}=a_{1}+a_{2}+a_{3}$ +\end_inset + +, + ..., + +\begin_inset Formula $s_{n}=a_{1}+a_{2}+\cdots+a_{n}=\sum_{j=1}^{n}a_{j}$ +\end_inset + + — + številu +\begin_inset Formula $s_{n}$ +\end_inset + + pravimo +\begin_inset Formula $n-$ +\end_inset + +ta delna vsota. +\end_layout + +\begin_layout Definition* +Vrsta je konvergentna, + če je v +\begin_inset Formula $\mathbb{R}$ +\end_inset + + konvergentno zaporedje +\begin_inset Formula $\left(s_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + +. + Številu +\begin_inset Formula $s=\lim_{n\to\infty}s_{n}$ +\end_inset + + tedaj pravimo vsota vrste in pišemo +\begin_inset Formula $s\eqqcolon\sum_{j=1}^{\infty}a_{j}$ +\end_inset + +. + Pojem neskončne vsote torej prevedemo na pojem limite pridruženega zaporedja delnih vsot. + Včasih vrsto (kot operacijo) enačimo z njeno vsoto (izidom operacije). +\end_layout + +\begin_layout Definition* +Če vrsta ni konvergentna, + rečemo, + da je divergentna. + Enako, + če je +\begin_inset Formula $s\in\left\{ \pm\infty\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Example* +Primeri vrst. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $a_{n}=\frac{1}{2^{n}}$ +\end_inset + +, + torej zaporedje +\begin_inset Formula $\frac{1}{2},\frac{1}{4},\frac{1}{8},\dots$ +\end_inset + +. + Ali se sešteje v 1? + Velja +\begin_inset Formula $s=\lim_{n\to\infty}\sum_{j=1}^{n}a_{j}$ +\end_inset + +. + Pišimo +\begin_inset Formula $q=\frac{1}{2}$ +\end_inset + +, + tedaj +\begin_inset Formula $a_{n}=q^{n}$ +\end_inset + + in +\begin_inset Formula +\[ +s_{n}=q+q^{2}+q^{3}+\cdots+q^{n}=q\left(1+q+q^{2}+\cdots+q^{n-1}\right)=q\frac{\left(1+q+q^{2}+\cdots+q^{n-1}\right)\left(1-q\right)}{1-q}= +\] + +\end_inset + + +\begin_inset Formula +\[ +=q\frac{\left(1+q+q^{2}+\cdots+q^{n-1}\right)-\left(q+q^{2}+q^{3}+\cdots+q^{n}\right)}{1-q}=q\frac{1-q^{n}}{1-q}=\frac{q}{1-q}\left(1-q^{n}\right) +\] + +\end_inset + +Izračunajmo +\begin_inset Formula $\lim_{n\to\infty}s_{n}=\lim_{n\to\infty}\frac{q}{1-q}\left(1-\cancelto{0}{q^{n}}\right)=\frac{q}{1-q}$ +\end_inset + + (velja, + ker +\begin_inset Formula $q\in\left(-1,1\right)$ +\end_inset + +), + torej je +\begin_inset Formula $s=\sum_{n=1}^{\infty}q^{n}=\frac{q}{1-q}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Geometrijska vrsta (splošno). + Naj bo +\begin_inset Formula $q\in\mathbb{R}$ +\end_inset + +. + Vrsta +\begin_inset Formula $\sum_{j=0}^{\infty}q^{j}$ +\end_inset + + se imenuje geometrijska vrsta. + Velja +\begin_inset Formula $s=\lim_{n\to\infty}\sum_{j=0}^{n}q^{j}$ +\end_inset + + in +\begin_inset Formula $s_{n}=1+q+q^{2}+q^{3}+\cdots+q^{n}$ +\end_inset + +. + Če je +\begin_inset Formula $q=1$ +\end_inset + +, + je +\begin_inset Formula $s_{n}=n+1$ +\end_inset + +, + sicer množimo izraz z +\begin_inset Formula $\left(1-q\right)$ +\end_inset + +: +\begin_inset Formula +\[ +\left(1+q+q^{2}+\cdots+q^{n}\right)\left(1-q\right)=\left(1+q+q^{2}+\cdots+q^{n}\right)-\left(q+q^{2}+q^{3}+\cdots+q^{n+1}\right)=1-q^{n+1} +\] + +\end_inset + +torej +\begin_inset Formula $s_{n}=\frac{1-q^{n+1}}{1-q}$ +\end_inset + + in vrsta konvergira +\begin_inset Formula $\Leftrightarrow q\not=1$ +\end_inset + + in +\begin_inset Formula $\lim_{n\to\infty}\frac{1-q^{n+1}}{1-q}\exists$ +\end_inset + + v +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. + To pa se zgodi natanko za +\begin_inset Formula $q\in\left(-1,1\right)$ +\end_inset + +, + takrat je +\begin_inset Formula $\lim_{n\to\infty}\frac{1-\cancelto{0}{q^{n+1}}}{1-q}=\frac{1}{1-q}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Harmonična vrsta. + Je vrsta +\begin_inset Formula $\sum_{j=1}^{\infty}\frac{1}{j}$ +\end_inset + +. + Velja +\begin_inset Formula $\frac{1}{j}\underset{j\to\infty}{\longrightarrow}0$ +\end_inset + +, + toda vrsta divergira. + Dokaz sledi kmalu malce spodaj. +\end_layout + +\end_deeper +\begin_layout Question* +Kako lahko enostavno določimo, + ali dana vrsta konvergira? +\end_layout + +\begin_layout Subsection +Konvergenčni kriteriji +\end_layout + +\begin_layout Theorem* +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hypertarget{cauchyvrste}{Cauchyjev pogoj} +\end_layout + +\end_inset + +. + Vrsta +\begin_inset Formula $\sum_{j=1}^{\infty}a_{j}$ +\end_inset + + je konvergentna +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + delne vrste ustrezajo Cauchyjevemu pogoju; + +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n,m\in\mathbb{N}:n,m\geq n_{0}\Rightarrow\left|s_{m}-s_{n}\right|=\left|\sum_{j=n+1}^{m}a_{j}\right|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Corollary* +\begin_inset Formula $\sum_{j=1}^{\infty}a_{j}$ +\end_inset + + konvergira +\begin_inset Formula $\Rightarrow\lim_{j\to\infty}a_{j}=0$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Uporabimo izrek zgoraj za +\begin_inset Formula $n=m-1$ +\end_inset + +: + +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|s_{n}-s_{n+1}\right|=\left|a_{n}\right|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Example* +Vrsti +\begin_inset Formula $\sum_{j=1}^{\infty}\cos n$ +\end_inset + + in +\begin_inset Formula $\sum_{j=1}^{\infty}\sin n$ +\end_inset + + divergirata, + saj smo videli, + da členi ne ene ne druge ne konvergirajo nikamor, + torej tudi ne proti 0, + kar je potreben pogoj za konvergenco vrste. +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Example* +Harmonična vrsta divergira. + Protiprimer Cauchyjevega pogoja: + Naj bo +\begin_inset Formula $\varepsilon=\frac{1}{4}$ +\end_inset + +. + Tedaj ne glede na izbiro +\begin_inset Formula $n_{0}$ +\end_inset + + najdemo: +\begin_inset Formula +\[ +s_{2n}-s_{n}=\sum_{j=n+1}^{2n}\frac{1}{j}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}+\cdots+\frac{1}{2n}=\frac{1}{2} +\] + +\end_inset + +Dokaz divergence brez Cauchyjevega pogoja: + +\begin_inset Formula $s_{2^{n}}=a_{1}+\sum_{j=1}^{n}\left(s_{2^{j}}-s_{s^{j-1}}\right)>1+\frac{n}{2}$ +\end_inset + + in +\begin_inset Formula $\lim_{n\to\infty}1+\frac{n}{2}=\infty$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Geometrični argument za divergenco: + TODO XXX FIXME DODAJ +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Theorem* +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hypertarget{pk}{Primerjalni kriterij} +\end_layout + +\end_inset + +. + Naj bosta +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + in +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ +\end_inset + + vrsti z nenegativnimi členi. + Naj bo +\begin_inset Formula $\forall k\geq k_{0}:a_{k}\leq b_{k}$ +\end_inset + + (od nekod naprej) — + pravimo, + da je +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ +\end_inset + + majoranta za +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + od nekod naprej. +\end_layout + +\begin_deeper +\begin_layout Itemize +Če +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ +\end_inset + + konvergira, + tedaj tudi +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + konvergira. +\end_layout + +\begin_layout Itemize +Če +\begin_inset Formula $\text{\ensuremath{\sum_{n=1}^{\infty}a_{n}=\infty}}$ +\end_inset + +, + tedaj tudi +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}=\infty$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Example* +Videli smo, + da +\begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k}$ +\end_inset + + divergira. + Kaj pa +\begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k^{2}}$ +\end_inset + +? + Preverimo naslednje in uporabimo primerjalni kriterij: +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $\forall k\in\mathbb{N}:\frac{1}{k^{2}}\leq\frac{2}{k\left(k+1\right)}$ +\end_inset + +? + Računajmo +\begin_inset Formula $k^{2}\geq\frac{k\left(k+1\right)}{2}\sim k\geq\frac{k+1}{2}\sim\frac{k}{2}\geq\frac{1}{2}$ +\end_inset + +. + Velja, + ker +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Vrsta +\begin_inset Formula $\sum_{k=1}^{\infty}\frac{2}{k\left(k+1\right)}$ +\end_inset + + konvergira? + Opazimo +\begin_inset Formula $\frac{1}{k}-\frac{1}{k+1}=\frac{k+1}{k\left(k+1\right)}-\frac{k}{k\left(k+1\right)}=\frac{1}{k\left(k+1\right)}$ +\end_inset + +. + Za delne vsote vrste +\begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k\left(k+1\right)}$ +\end_inset + + velja: +\begin_inset Formula +\[ +\sum_{k=1}^{n}\frac{1}{k\left(k+1\right)}=\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{n+1}\underset{n\to\infty}{\longrightarrow}1, +\] + +\end_inset + +torej +\begin_inset Formula $\sum_{k=1}^{\infty}\frac{2}{k\left(k+1\right)}=2$ +\end_inset + +. + Posledično po primerjalnem kriteriju tudi +\begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k^{2}}$ +\end_inset + + konvergira. + Izkaže se +\begin_inset Formula $\sum_{k=1}^{\infty}\frac{1}{k^{2}}=\frac{\pi^{2}}{6}\approx1,645$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Theorem* +Kvocientni oz. + d'Alembertov kriterij. + Za vrsto s pozitivnimi členi +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + definirajmo +\begin_inset Formula $D_{n}\coloneqq\frac{a_{n+1}}{a_{n}}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $\exists n_{0}\in\mathbb{N},q\in\left(0,1\right)\forall n\geq n_{0}:D_{n}\leq q\Longrightarrow\sum_{n=1}^{\infty}a_{n}<\infty$ +\end_inset + + (vrsta konvergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\forall n\geq n_{0}:D_{n}\geq1\Longrightarrow\sum_{n=1}^{\infty}a_{n}=\infty$ +\end_inset + + (vrsta divergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists D=\lim_{n\to\infty}D_{n}\in\mathbb{R}\Longrightarrow$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset CommandInset label +LatexCommand label +name "enu:kvocientni3a" + +\end_inset + + +\begin_inset Formula $D<1\Longrightarrow\sum_{n=1}^{\infty}a_{n}<\infty$ +\end_inset + + (vrsta konvergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $D>1\Longrightarrow\sum_{n=1}^{\infty}a_{n}=\infty$ +\end_inset + + (vrsta divergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $D=1\Longrightarrow$ +\end_inset + + s tem kriterijem ne moremo določiti konvergence. +\end_layout + +\end_deeper +\end_deeper +\begin_layout Proof +Razlaga. + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $\forall n>n_{0}:D_{n}\leq q$ +\end_inset + +, + torej +\begin_inset Formula $\frac{a_{n+1}}{a_{n}}\leq q\sim a_{n+1}\leq qa_{n}$ +\end_inset + + in hkrati +\begin_inset Formula $\text{\ensuremath{\frac{a_{n+2}}{a_{n+1}}\leq q\sim a_{n+2}\leq qa_{n+1}}}$ +\end_inset + +, + torej skupaj +\begin_inset Formula $a_{n+2}\leq qa_{n+1}\leq qqa_{n}=q^{2}a_{n}$ +\end_inset + +, + sledi +\begin_inset Formula $q_{n+2}\leq q^{2}a_{n}$ +\end_inset + + in +\begin_inset Formula $\forall k\in\mathbb{N}:q_{n+k}\leq q^{k}a_{n}$ +\end_inset + +. + Vrsto smo majorizirali z geometrijsko vrsto, + ki ob +\begin_inset Formula $q\in\left(0,1\right)$ +\end_inset + + konvergira po primerjalnem kriteriju, + zato tudi naša vrsta konvergira. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n>n_{0}:\frac{a_{n+1}}{a_{n}}\geq D\geq1$ +\end_inset + +, + torej +\begin_inset Formula $a_{n+1}\geq a_{n}$ +\end_inset + + in hkrati +\begin_inset Formula $a_{n+2}\geq a_{n+1}$ +\end_inset + +, + torej skupaj +\begin_inset Formula $a_{n+2}\geq a_{n}$ +\end_inset + +, + sledi +\begin_inset Formula $\forall k\in\mathbb{N}:a_{n+k}\geq a_{n}$ +\end_inset + +. + Naša vrsta torej majorizira konstantno vrsto, + ki očitno divergira; + +\begin_inset Formula $\sum_{k=n_{0}}^{\infty}a_{k}\geq\sum_{k=n_{0}}^{\infty}a_{n}=0$ +\end_inset + +. + Potemtakem tudi naša vrsta divergira. + Poleg tega niti ne velja +\begin_inset Formula $a_{k}\underset{k\to\infty}{\longrightarrow}0$ +\end_inset + +, + torej vrsta gotovo divergira. +\end_layout + +\begin_layout Enumerate +Enako kot 1 in 2. +\end_layout + +\end_deeper +\begin_layout Example* +Za +\begin_inset Formula $x>0$ +\end_inset + + definiramo +\begin_inset Formula $e^{x}=\sum_{k=0}^{\infty}\frac{x^{k}}{k!}$ +\end_inset + +. + Vrsta res konvergira po točki +\begin_inset CommandInset ref +LatexCommand ref +reference "enu:kvocientni3a" +plural "false" +caps "false" +noprefix "false" +nolink "false" + +\end_inset + +. +\begin_inset Formula +\[ +D_{n}=\frac{\frac{x^{n+1}}{\left(n+1\right)!}}{\frac{x^{n}}{n!}}=\frac{x^{n+1}n!}{x^{n}\left(n+1\right)!}=\frac{x}{n+1}\underset{n\to\infty}{\longrightarrow}0 +\] + +\end_inset + + +\end_layout + +\begin_layout Theorem* +Korenski oz. + Cauchyjev kriterij. + Naj bo +\begin_inset Formula $\sum_{k=1}^{\infty}a_{k}$ +\end_inset + + vrsta z nenegativnimi členi. + Naj bo +\begin_inset Formula $c_{n}\coloneqq\sqrt[n]{a_{n}}$ +\end_inset + +.ž +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $\exists n_{0}\in\mathbb{N},q\in\left(0,1\right)\forall n>n_{0}:c_{n}\leq q\Longrightarrow\sum_{k=1}^{\infty}a_{k}<\infty$ +\end_inset + + (vrsta konvergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists n_{0}\in\mathbb{N}\forall n>n_{0}:c_{n}\geq1\Longrightarrow\sum_{k=1}^{\infty}a_{k}=\infty$ +\end_inset + + (vrsta divergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\exists c=\lim_{n\to\infty}c_{n}\in\mathbb{R}\Longrightarrow$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Formula $c<1\Longrightarrow\sum_{k=1}^{\infty}a_{k}<\infty$ +\end_inset + + (vrsta konvergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c>1\Longrightarrow\sum_{k=1}^{\infty}a_{k}=\infty$ +\end_inset + + (vrsta divergira) +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c=1\Longrightarrow$ +\end_inset + + s tem kriterijem ne moremo določiti konvergence. +\end_layout + +\end_deeper +\end_deeper +\begin_layout Proof +Skica dokazov. +\end_layout + +\begin_deeper +\begin_layout Enumerate +Velja +\begin_inset Formula $\forall n>n_{0}:c_{n}\leq q$ +\end_inset + +. + To pomeni +\begin_inset Formula $\sqrt[n]{a_{n}}\leq q$ +\end_inset + +, + torej +\begin_inset Formula $a_{n}\leq q^{n}$ +\end_inset + + in +\begin_inset Formula $a_{n+1}\leq q^{n+1}$ +\end_inset + +, + torej je vrsta majorizirana z geometrijsko vrsto +\begin_inset Formula $\sum_{n=1}^{\infty}q^{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Velja +\begin_inset Formula $\forall n>n_{0}:c_{n}\geq1$ +\end_inset + +. + To pomeni +\begin_inset Formula $\sqrt[n]{a_{n}}\geq1$ +\end_inset + +, + torej +\begin_inset Formula $a_{n}\geq1$ +\end_inset + +, + torej je vrsta majorizirana s konstantno in zato divergentno vrsto +\begin_inset Formula $\sum_{n=1}^{\infty}1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Enako kot 1 in 2. +\end_layout + +\end_deeper +\begin_layout Subsection +Alternirajoče vrste +\end_layout + +\begin_layout Definition* +Vrsta je alternirajoča, + če je predznak naslednjega člena nasproten predznaku tega člena. + ZDB +\begin_inset Formula $\forall n\in\mathbb{N}:\sgn a_{n+1}=-\sgn a_{n}$ +\end_inset + +, + kjer je +\begin_inset Formula $\sgn:\mathbb{R}\to\left\{ -1,0,1\right\} $ +\end_inset + + s predpisom +\begin_inset Formula $\sgn a=\begin{cases} +-1 & ;a<0\\ +1 & ;a>0\\ +0 & ;a=0 +\end{cases}$ +\end_inset + +. + ZDB +\begin_inset Formula $\forall n\in\mathbb{N}:a_{n+1}a_{n}\leq0$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Leibnizov konvergenčni kriterij. + Naj bo +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + padajoče zaporedje in +\begin_inset Formula $\lim_{n\to\infty}a_{n}=0$ +\end_inset + +. + Tedaj vrsta +\begin_inset Formula $\sum_{k=1}^{\infty}\left(-1\right)^{k}a_{k}$ +\end_inset + + konvergira. + Če je +\begin_inset Formula $s\coloneqq\sum_{k=1}^{\infty}\left(-1\right)^{k}a_{k}$ +\end_inset + + in +\begin_inset Formula $s_{n}\coloneqq\sum_{k=1}^{\infty}\left(-1\right)^{k}a_{k}$ +\end_inset + +, + tedaj +\begin_inset Formula $\left|s-s_{k}\right|\leq a_{n+1}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Skica dokaza. + Vidimo, + da delne vsote +\begin_inset Formula $s_{2n}$ +\end_inset + + padajo k +\begin_inset Formula $s''$ +\end_inset + + in delne vsote +\begin_inset Formula $s_{2n-1}$ +\end_inset + + naraščajo k +\begin_inset Formula $s'$ +\end_inset + +. + Toda ker +\begin_inset Formula $s_{2n}-s_{2n-1}=a_{2n}$ +\end_inset + +, + velja +\begin_inset Formula $s'=s''$ +\end_inset + +. + Limita razlike dveh zaporedij je razlika limit teh dveh zaporedij, + torej +\begin_inset Formula $s'=s''=s$ +\end_inset + +. + +\begin_inset Formula $s$ +\end_inset + + je supremum lihih in infimum sodih vsot. + +\begin_inset Formula $\left|s-s_{n}\right|\leq\left|s_{n+1}-s_{n}\right|=a_{n+1}$ +\end_inset + +. +\end_layout + +\begin_layout Example* +Harmonična vrsta +\begin_inset Formula $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots\to\infty$ +\end_inset + +, + toda alternirajoča harmonična vrsta +\begin_inset Formula $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\to\log2$ +\end_inset + +. +\end_layout + +\begin_layout Subsection +Absolutno konvergentne vrste +\end_layout + +\begin_layout Definition* +Vrsta +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + je absolutno konvergentna, + če je +\begin_inset Formula $\sum_{n=1}^{\infty}\left|a_{n}\right|$ +\end_inset + + konvergentna. +\end_layout + +\begin_layout Theorem* +Absolutna konvergenca +\begin_inset Formula $\Rightarrow$ +\end_inset + + konvergenca. +\end_layout + +\begin_layout Proof +Uporabimo +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{cauchyvrste}{Cauchyjev pogoj za konvergenco vrst} +\end_layout + +\end_inset + + in trikotniško neenakost. +\begin_inset Formula +\[ +\left|s_{m}-s_{n}\right|=\left|\sum_{j=n+1}^{m}a_{j}\right|\leq\sum_{j=n+1}^{m}\left|a_{j}\right|<\varepsilon +\] + +\end_inset + +za +\begin_inset Formula $m,n\geq n_{0}$ +\end_inset + + za nek +\begin_inset Formula $n_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Remark* +Obrat ne velja, + protiprimer je alternirajoča harmonična vrsta. +\end_layout + +\begin_layout Subsection +Pogojno konvergentne vrste +\end_layout + +\begin_layout Standard +\begin_inset Formula $\sum_{k=0}^{\infty}2-\sum_{k=0}^{\infty}1\not=\sum_{k=0}^{\infty}\left(2-1\right)$ +\end_inset + +, + temveč +\begin_inset Formula $\infty-\infty=$ +\end_inset + + nedefinirano. +\end_layout + +\begin_layout Question* +Ross-Littlewoodov paradoks. + Ali smemo zamenjati vrstni red seštevanja, + če imamo neskončno mnogo sumandov? +\end_layout + +\begin_layout Standard +Najprej vprašanje natančneje opredelimo in vpeljimo orodja za njegovo obravnavo. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $\mathcal{M}\subset\mathbb{N}$ +\end_inset + +. + Permutacija +\begin_inset Formula $\mathcal{M}$ +\end_inset + + je vsaka bijektivna preslikava +\begin_inset Formula $\pi:\mathcal{M}\to\mathcal{M}$ +\end_inset + +. + Če je +\begin_inset Formula $\mathcal{M}=\left\{ a_{1},\dots,a_{n}\right\} $ +\end_inset + + končna množica, + tedaj +\begin_inset Formula $\pi$ +\end_inset + + označimo s tabelo: +\begin_inset Formula +\[ +\left(\begin{array}{ccc} +a_{1} & \cdots & a_{n}\\ +\pi\left(a_{1}\right) & \cdots & \pi\left(a_{n}\right) +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Example* +\begin_inset Formula +\[ +\pi=\left(\begin{array}{ccccc} +1 & 2 & 3 & 4 & 5\\ +5 & 3 & 1 & 4 & 2 +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Definition* +Vrsta +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + je brezpogojno konvergentna, + če za vsako permutacijo +\begin_inset Formula $\pi:\mathbb{N}\to\mathbb{N}$ +\end_inset + + vrsta +\begin_inset Formula $\sum_{n=1}^{\infty}\pi\left(a_{n}\right)$ +\end_inset + + konvergira in vsota ni odvisna od +\begin_inset Formula $\pi$ +\end_inset + +. + Vrsta je pogojno konvergentna, + če je konvergentna, + toda ne brezpogojno. +\end_layout + +\begin_layout Example* +\begin_inset Formula $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$ +\end_inset + + je pogojno konvergentna, + ker pri seštevanju z vrstnim redom, + pri katerem tisočim pozitivnim členom sledi en negativen in njemu zopet tisoč pozitivnih itd., + vrsta ne konvergira. +\end_layout + +\begin_layout Theorem* +Absolutna konvergenca +\begin_inset Formula $\Leftrightarrow$ +\end_inset + + Brezpogojna konvergenca +\end_layout + +\begin_layout Standard +\begin_inset Separator plain +\end_inset + + +\end_layout + +\begin_layout Theorem* +Riemannov sumacijski izrek. + Če je vrsta pogojno konvergentna, + tedaj +\begin_inset Formula $\forall x\in\mathbb{R}\cup\left\{ \pm\infty\right\} \exists$ +\end_inset + + permutacija +\begin_inset Formula $\pi:\mathbb{N}\to\mathbb{N}\ni:\sum_{n=1}^{\infty}a_{\pi\left(n\right)}=x$ +\end_inset + +. + ZDB Končna vsota je lahko karkoli, + če lahko poljubno spremenimo vrstni red seštevanja. + Prav tako obstaja taka permutacija +\begin_inset Formula $\pi$ +\end_inset + +, + pri kateri +\begin_inset Formula $\sum_{n=1}^{\infty}a_{\pi\left(n\right)}$ +\end_inset + + nima vsote ZDB delne vsotee ne konvergirajo. +\end_layout + +\begin_layout Example* +\begin_inset Formula $\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n}}{n}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Funkcijske vrste +\end_layout + +\begin_layout Standard +Tokrat poskušamo seštevati funkcije. + V prejšnjem razdelku seštevamo le realna števila. + Funkcijska vrsta, + če je +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + zaporedije funkcij +\begin_inset Formula $X\to\mathbb{R}$ +\end_inset + + in +\begin_inset Formula $x$ +\end_inset + + zunanja konstanta, + izgleda takole: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\sum_{n=1}^{\infty}a_{n}\left(x\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $X$ +\end_inset + + neka množica in +\begin_inset Formula $\Phi=\left\{ \varphi_{n}:X\to\mathbb{R},n\in\mathbb{N}\right\} $ +\end_inset + + družina funkcij. +\end_layout + +\begin_layout Definition* +Pravimo, + da funkcije +\begin_inset Formula $\varphi_{n}$ +\end_inset + + konvergirajo po točkah na +\begin_inset Formula $X$ +\end_inset + +, + če je +\begin_inset Formula $\forall x\in X$ +\end_inset + + zaporedje +\begin_inset Formula $\left(\varphi_{n}\left(x\right)\right)_{n\in\mathbb{N}}$ +\end_inset + + konvergentno. +\end_layout + +\begin_layout Definition* +Označimo limito s +\begin_inset Formula $\varphi\left(x\right)$ +\end_inset + +. + ZDB to pomeni, + da +\begin_inset Formula +\[ +\forall\varepsilon>0,x\in X:\exists n_{0}=n_{0}\left(\varepsilon,x\right)\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|<\varepsilon. +\] + +\end_inset + + +\end_layout + +\begin_layout Definition* +Pravimo, + da funkcije +\begin_inset Formula $\varphi_{n}$ +\end_inset + + konvergirajo enakomerno na +\begin_inset Formula $X$ +\end_inset + +, + če +\begin_inset Formula +\[ +\forall\varepsilon>0\exists n_{0}=n_{0}\left(\varepsilon\right)\in\mathbb{N}\forall x\in X,n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|\leq\varepsilon +\] + +\end_inset + + oziroma ZDB +\begin_inset Formula +\[ +\forall\varepsilon>0\exists n_{0}=n_{0}\left(\varepsilon\right)\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\sup_{x\in X}\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|\leq\varepsilon. +\] + +\end_inset + + +\end_layout + +\begin_layout Definition* +Poudariti je treba, + da je pri konvergenci po točkah +\begin_inset Formula $n_{0}$ +\end_inset + + lahko odvisen od +\begin_inset Formula $\varepsilon$ +\end_inset + + in +\begin_inset Formula $x$ +\end_inset + +, + pri enakomerni konvergenci pa le od +\begin_inset Formula $\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Note* +Očitno enakomerna konvergenca implicira konvergenco po točkah, + obratno pa ne velja. +\end_layout + +\begin_layout Example* +Za +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + definiramo +\begin_inset Formula $\varphi_{n}:\left[0,1\right]\to\left[0,1\right]$ +\end_inset + + s predpisom +\begin_inset Formula $\varphi_{n}\left(x\right)=x^{n}$ +\end_inset + +. + Tedaj obstaja +\begin_inset Formula $\varphi\left(x\right)\coloneqq\lim_{n\to\infty}\varphi_{n}\left(x\right)=\begin{cases} +0 & ;x\in[0,1)\\ +1 & ;x=1 +\end{cases}$ +\end_inset + +. + Torej po definiciji velja +\begin_inset Formula $\varphi_{n}\to\varphi$ +\end_inset + + po točkah, + toda ne velja +\begin_inset Formula $\varphi_{n}\to\varphi$ +\end_inset + + enakomerno. + Za poljubno velik pas okoli +\begin_inset Formula $\varphi\left(x\right)$ +\end_inset + + bodo še tako pozne funkcijske vrednosti +\begin_inset Formula $\varphi_{n}\left(x\right)$ +\end_inset + + od nekega +\begin_inset Formula $x$ +\end_inset + + dalje izven tega pasu. + Če bi +\begin_inset Formula $\varphi_{n}\to\varphi$ +\end_inset + + enakomerno, + tedaj bi za poljuben +\begin_inset Formula $\varepsilon\in\left(0,1\right)$ +\end_inset + + in dovolj pozne +\begin_inset Formula $n$ +\end_inset + + (večje od nekega +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + +) veljalo +\begin_inset Formula $\forall x\in\left[0,1\right]:\left|\varphi_{n}\left(x\right)-\varphi\left(x\right)\right|<\varepsilon$ +\end_inset + +. + To je ekvivalentno +\begin_inset Formula $\forall x\in\left(0,1\right):\left|x^{n}\right|<\varepsilon\Leftrightarrow n\log x<\log\varepsilon\Leftrightarrow n>\frac{\log\varepsilon}{\log x}$ +\end_inset + +. + Toda +\begin_inset Formula $\lim_{x\nearrow1}\frac{\log\varepsilon}{\log x}=\infty$ +\end_inset + +, + zato tak +\begin_inset Formula $n$ +\end_inset + + ne obstaja. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $X$ +\end_inset + + neka množica in +\begin_inset Formula $\left(f_{j}:X\to\mathbb{R}\right)_{j\in\mathbb{N}}$ +\end_inset + + dano zaporedje funkcij. + Pravimo, + da funkcijska vrsta +\begin_inset Formula $\sum_{j=1}^{\infty}f_{j}$ +\end_inset + + konvergira po točkah na +\begin_inset Formula $X$ +\end_inset + +, + če +\begin_inset Formula $\forall x\in X:\sum_{j=1}^{\infty}f_{j}\left(x\right)<0$ +\end_inset + + (številska vrsta je konvergentna). + ZDB to pomeni, + da funkcijsko zaporedje delnih vsot +\begin_inset Formula $s_{n}\coloneqq\sum_{j=1}^{n}f_{j}$ +\end_inset + + konvergira po točkah na +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Funkcijska vrsta +\begin_inset Formula $s=\sum_{j=1}^{\infty}$ +\end_inset + + konvergira enakomerno na +\begin_inset Formula $X$ +\end_inset + +, + če funkcijsko zaporedje delnih vsot +\begin_inset Formula $s_{n}\coloneqq\sum_{j=1}^{n}f_{j}$ +\end_inset + + konvergira enakomerno na +\begin_inset Formula $X$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Funkcija oblike +\begin_inset Formula $x\mapsto\sum_{j=1}^{\infty}f_{j}\left(x\right)$ +\end_inset + + se imenuje funkcijska vrsta. +\end_layout + +\begin_layout Exercise* +Dokaži, + da +\begin_inset Formula $\sum_{n=1}^{\infty}x^{n}$ +\end_inset + + ne konvergira enakomerno! + Vrsta konvergira po točkah le na intervalu +\begin_inset Formula $x\in\left(0,1\right)$ +\end_inset + +, + za druge +\begin_inset Formula $x$ +\end_inset + + divergira. + Ko fiksiramo zunanjo konstanto, + gre za geometrijsko vrsto. + Delna vsota +\begin_inset Formula $\sum_{j=1}^{n}x^{j}=\frac{x\left(1-x^{n}\right)}{1-x}$ +\end_inset + +. + Velja +\begin_inset Formula $\lim_{n\to\infty}\frac{x\left(1-x^{n}\right)}{1-x}=x\lim_{n\to\infty}\frac{1-\cancelto{0}{x^{n}}}{1-x}=\frac{x}{1-x}$ +\end_inset + +. + Sedaj prevedimo, + ali +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall x\in\left(-1,1\right),n\geq n_{0}:\left|\frac{x\left(1-x^{n}\right)}{1-x}-\frac{x}{1-x}\right|<\varepsilon$ +\end_inset + +. + Za začetekk si oglejmo le +\begin_inset Formula $x>0$ +\end_inset + +. + Ker je tedaj +\begin_inset Formula $\frac{x\left(1-x^{n}\right)}{1-x}<\frac{x}{1-x}$ +\end_inset + +, + je +\begin_inset Formula $\left|\frac{x\left(1-x^{n}\right)}{1-x}-\frac{x}{1-x}\right|=\frac{x}{1-x}-\frac{x\left(1-x^{n}\right)}{1-x}=\frac{\cancel{x-x+}x^{n+1}}{1-x}$ +\end_inset + +. + Računajmo sedaj +\begin_inset Formula $\frac{x^{n+1}}{1-x}<\varepsilon\sim x^{n+1}<\varepsilon\left(1-x\right)\sim\left(n+1\right)\log x<\log\left(\varepsilon\left(1-x\right)\right)\sim n+1>\frac{\log\left(\varepsilon\left(1-x\right)\right)}{\log x}\sim n>\frac{\log\left(\varepsilon\left(1-x\right)\right)}{\log x}-1$ +\end_inset + +. + Ker je +\begin_inset Formula $n$ +\end_inset + + odvisen od +\begin_inset Formula $x$ +\end_inset + +, + vsota ni enakomerno konvergentna. +\end_layout + +\begin_layout Standard +Poseben primer funkcijskih vrst so funkcijske vrste funkcij oblike +\begin_inset Formula $f_{j}=b_{j}\cdot x^{j}$ +\end_inset + +, + torej potence (monomi). +\end_layout + +\begin_layout Definition* +Potenčna vrsta je funkcijska vrsta oblike +\begin_inset Formula $\sum_{j=1}^{\infty}b_{j}\cdot x^{j}$ +\end_inset + +, + kjer so a +\begin_inset Formula $\left(b_{j}\right)_{j\in\mathbb{N}}$ +\end_inset + + dana realna števila. +\end_layout + +\begin_layout Theorem* +Cauchy-Hadamard. + Za vsako potenčno vrsto obstaja konvergenčni radij +\begin_inset Formula $R\in\left[0,\infty\right]\ni:$ +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Itemize +vrsta absolutno konvergira za +\begin_inset Formula $\left|x\right|<R$ +\end_inset + +, +\end_layout + +\begin_layout Itemize +vrsta divergira za +\begin_inset Formula $\left|x\right|>R$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Theorem* +Velja +\begin_inset Formula $\text{\ensuremath{\frac{1}{R}=\limsup_{k\to\infty}\sqrt[k]{\left|b_{k}\right|}}}$ +\end_inset + +, + kjer vzamemo +\begin_inset Formula $\frac{1}{0}\coloneqq\infty$ +\end_inset + + in +\begin_inset Formula $\frac{1}{\infty}\coloneqq0$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Rezultat že poznamo za zelo poseben primer +\begin_inset Formula $\forall j\in\mathbb{N}:b_{j}=1$ +\end_inset + + (geometrijska vrsta). + Ideja dokaza je, + da konvergenco vsake potenčne vrste opišemo s pomočjo geometrijske vrste. +\end_layout + +\begin_deeper +\begin_layout Itemize +Konvergenca: + Za +\begin_inset Formula $x=0$ +\end_inset + + vrsta očitno konvergira, + zato privzamemo +\begin_inset Formula $x\not=0$ +\end_inset + +. + Definirajmo +\begin_inset Formula $R$ +\end_inset + + s formulo iz definicije ( +\begin_inset Formula $R=\frac{1}{\limsup_{k\to\infty}\sqrt[k]{\left|b_{k}\right|}}$ +\end_inset + +). + Naj bo +\begin_inset Formula $x$ +\end_inset + + tak, + da +\begin_inset Formula $\left|x\right|<R\leq\infty$ +\end_inset + + (sledi +\begin_inset Formula $R>0$ +\end_inset + +). + Naj bo +\begin_inset Formula $\varepsilon>0$ +\end_inset + +. + Tedaj po definiciji +\begin_inset Formula $R$ +\end_inset + + velja +\begin_inset Formula $\sqrt[k]{\left|b_{k}\right|}\leq\frac{1}{R}+\varepsilon$ +\end_inset + + za vse dovolj velike +\begin_inset Formula $k$ +\end_inset + +. + Za take +\begin_inset Formula $k$ +\end_inset + + sledi +\begin_inset Formula +\[ +\left|b_{k}\right|\left|x\right|^{k}\leq\left(\left(\frac{1}{R}+\varepsilon\right)\left|x\right|\right)^{k}. +\] + +\end_inset + +Opazimo, + da je desna stran neenačbe člen geometrijske vrste, + s katero majoriziramo vrsto iz absolutnih vrednosti členov naše vrste. + Preverimo, + da desna stran konvergira. + Konvergira, + kadar +\begin_inset Formula $\left(\frac{1}{R}+\varepsilon\right)\left|x\right|<1$ +\end_inset + + oziroma +\begin_inset Formula $\varepsilon<\frac{1}{\left|x\right|}-\frac{1}{R}$ +\end_inset + +. + Po +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{pk}{primerjalnem kriteriju} +\end_layout + +\end_inset + + torej naša vrsta absolutno konvergira. +\end_layout + +\begin_layout Itemize +Divergenca: + Vzemimo poljuben +\begin_inset Formula $\varepsilon>0$ +\end_inset + +. + Po definciji +\begin_inset Formula $R$ +\end_inset + + sledi, + da je +\begin_inset Formula $\sqrt[k]{\left|b_{k}\right|}\geq\frac{1}{R}-\varepsilon$ +\end_inset + + za vse dovolj velike +\begin_inset Formula $k$ +\end_inset + +. + Za take +\begin_inset Formula $k$ +\end_inset + + sledi +\begin_inset Formula +\[ +\left|b_{k}\right|\left|x\right|^{k}\geq\left(\left(\frac{1}{R}-\varepsilon\right)\left|x\right|\right)^{k}. +\] + +\end_inset + +Opazimo, + da je desna stran neenačbe člen geometrijske vrste, + ki je majorizirana z vrsto iz absolutnih vrednosti členov naše vrste. + Desna stran divergira, + ko +\begin_inset Formula $\left(\frac{1}{R}-\varepsilon\right)\left|x\right|=1$ +\end_inset + + oziroma +\begin_inset Formula $\varepsilon=\frac{1}{R}-\frac{1}{\left|x\right|}$ +\end_inset + +, + zato tudi naša vrsta divergira. +\end_layout + +\end_deeper +\begin_layout Example* +Primer konvergenčnega radija potenčne vrste od prej: + +\begin_inset Formula $\sum_{j=1}^{\infty}x^{j}$ +\end_inset + +. + Velja +\begin_inset Formula $\forall j\in\mathbb{N}:b_{j}=1$ +\end_inset + +, + torej +\begin_inset Formula $R=\frac{1}{\limsup_{j\to\infty}\sqrt[k]{\left|b_{k}\right|}}=1$ +\end_inset + +, + torej po zgornjem izreku vrsta konvergira za +\begin_inset Formula $x\in\left(-1,1\right)$ +\end_inset + + in divergira za +\begin_inset Formula $x\not\in\left[-1,1\right]$ +\end_inset + +. + Ročno lahko še preverimo, + da divergira tudi v +\begin_inset Formula $\left\{ -1,1\right\} $ +\end_inset + +. +\end_layout + +\begin_layout Section +Zveznost +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO XXX FIXME PREVERI ŠE V profesrojevih PDFJIH, + recimo dodaj dokaz zveznosti x^2 +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Ideja: + Izdelati želimo formulacijo, + s katero preverimo, + le lahko z dovolj majhno spremembo +\begin_inset Formula $x$ +\end_inset + + povzročimo majhno spremembo funkcijske vrednosti. +\end_layout + +\begin_layout Example* +Primer nezvezne funkcije je +\begin_inset Formula $f\left(x\right)=\begin{cases} +0 & ;0\leq x<1\\ +1 & ;x=1 +\end{cases}$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $D\subseteq\mathbb{R},a\in D$ +\end_inset + + in +\begin_inset Formula $f:D\to\mathbb{R}$ +\end_inset + +. + Pravimo, + da je +\begin_inset Formula $f$ +\end_inset + + zvezna v +\begin_inset Formula $a$ +\end_inset + +, + če +\begin_inset Formula $\forall\varepsilon>0\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + +. + +\begin_inset Formula $f$ +\end_inset + + je zvezna na množici +\begin_inset Formula $x\subseteq D$ +\end_inset + +, + če je zvezna na vsaki točki v +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hypertarget{kzzz}{Karakterizacija zveznosti z zaporedji} +\end_layout + +\end_inset + +. + Naj bodo +\begin_inset Formula $D,a,f$ +\end_inset + + kot prej. + Velja: + +\begin_inset Formula $f$ +\end_inset + + zvezna v +\begin_inset Formula $a\Leftrightarrow\forall\left(a_{n}\right)_{n\in\mathbb{N}},a_{n}\in D:\lim_{n\to\infty}a_{n}=a\Rightarrow\lim_{n\to\infty}f\left(a_{n}\right)=f\left(a\right)$ +\end_inset + + ZDB +\begin_inset Formula $f$ +\end_inset + + je zvezna v +\begin_inset Formula $a$ +\end_inset + +, + če za vsako k +\begin_inset Formula $a$ +\end_inset + + konvergentno zaporedje na domeni velja, + da funkcijske vrednosti členov zaporedja konvergirajo k funkcijski vrednosti +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Dokazujemo ekvivalenco. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Predpostavimo, + da je +\begin_inset Formula $f$ +\end_inset + + zvezna v +\begin_inset Formula $a$ +\end_inset + +, + torej +\begin_inset Formula $\forall\varepsilon>0\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + +. + Naj bo +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + poljubno zaporedje na +\begin_inset Formula $D$ +\end_inset + +, + ki konvergira k +\begin_inset Formula $a$ +\end_inset + +, + se pravi +\begin_inset Formula $\forall\varepsilon>0\exists n_{0}\in\mathbb{N}\forall n\in\mathbb{N}:n\geq n_{0}\Rightarrow\left|a-a_{n}\right|<\varepsilon$ +\end_inset + +. + Naj bo +\begin_inset Formula $\varepsilon$ +\end_inset + + poljuben. + Vsled zveznosti +\begin_inset Formula $f$ +\end_inset + + velja, + da je +\begin_inset Formula $\left|f\left(a_{n}\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + + za vse take +\begin_inset Formula $a_{n}$ +\end_inset + +, + da velja +\begin_inset Formula $\left|a_{n}-a\right|<\delta$ +\end_inset + + za neko +\begin_inset Formula $\delta\in\mathbb{R}$ +\end_inset + +. + Ker je zaporedje +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + konvergentno k +\begin_inset Formula $a$ +\end_inset + +, + so vsi členi po nekem +\begin_inset Formula $n_{0}$ +\end_inset + + v +\begin_inset Formula $\delta-$ +\end_inset + +okolici +\begin_inset Formula $a$ +\end_inset + +, + torej velja pogoj +\begin_inset Formula $\left|a_{n}-a\right|<\delta$ +\end_inset + +, + torej velja +\begin_inset Formula $\left|f\left(a_{n}\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + + za vse +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + PDDRAA +\begin_inset Formula $f$ +\end_inset + + ni zvezna v +\begin_inset Formula $a$ +\end_inset + +. + Da pridemo do protislovja, + moramo dokazati, + da +\begin_inset Formula $\exists\left(a_{n}\right)_{n\in\mathbb{N}},a_{n}\in D\ni:\lim_{n\to\infty}a_{n}=a$ +\end_inset + +, + a vendar +\begin_inset Formula $\lim_{n\to\infty}f\left(a_{n}\right)\not=f\left(a\right)$ +\end_inset + +. + Ker +\begin_inset Formula $f$ +\end_inset + + ni zvezna, + velja, + da +\begin_inset Formula $\exists\varepsilon>0\forall\delta>0\exists x\in D\ni:\left|x-a\right|<\delta\wedge\left|f\left(x\right)-f\left(a\right)\right|\geq\varepsilon$ +\end_inset + +. + Izberimo +\begin_inset Formula $\forall n\in\mathbb{N}:\delta_{n}\coloneqq\frac{1}{n}$ +\end_inset + +. + Tedaj +\begin_inset Formula $\forall n\in\mathbb{N}\exists\varepsilon>0,x\in D\eqqcolon x_{n}\ni:\left|x_{n}-a\right|<\frac{1}{n}\wedge\left|f\left(x_{n}\right)-f\left(a\right)\right|\geq\varepsilon$ +\end_inset + +. + S prvim argumentom konjunkcije smo poskrbeli za to, + da je naše konstruiramo zaporedje +\begin_inset Formula $\left(x_{n}\right)_{n\in\mathbb{N}}$ +\end_inset + + konvergentno k +\begin_inset Formula $a$ +\end_inset + +. + Konstruirali smo zaporedje, + pri katerem so funkcijske vrednosti za vsak +\begin_inset Formula $\varepsilon$ +\end_inset + + izven +\begin_inset Formula $\varepsilon-$ +\end_inset + +okolice +\begin_inset Formula $f\left(a\right)$ +\end_inset + +, + torej zaporedje ne konvergira k +\begin_inset Formula $f\left(a\right)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Theorem* +Naj bo +\begin_inset Formula $f:D\to\mathbb{R}$ +\end_inset + +. + +\begin_inset Formula $f$ +\end_inset + + je zvezna na +\begin_inset Formula $D\Leftrightarrow$ +\end_inset + + za vsako odprto množico +\begin_inset Formula $V\subset\mathbb{R}$ +\end_inset + + je +\begin_inset Formula $f^{-1}\left(V\right)$ +\end_inset + + spet odprta množica +\begin_inset Foot +status open + +\begin_layout Plain Layout +Za funkcijo +\begin_inset Formula $f:D\to V$ +\end_inset + + za +\begin_inset Formula $X\subseteq V$ +\end_inset + + definiramo +\begin_inset Formula $f^{-1}\left(X\right)\coloneqq\left\{ x\in D;f\left(x\right)\in V\right\} \subseteq D$ +\end_inset + +. +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Proof +Dokazujemo ekvivalenco. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Leftarrow\right)$ +\end_inset + + Predpostavimo, + da za vsako odprto množico +\begin_inset Formula $V\subset\mathbb{R}$ +\end_inset + + je +\begin_inset Formula $f^{-1}\left(V\right)$ +\end_inset + + spet odprta množica. + Dokazujemo, + da je +\begin_inset Formula $f$ +\end_inset + + zvezna na +\begin_inset Formula $D$ +\end_inset + +. + Naj bosta +\begin_inset Formula $a\in D,\varepsilon>0$ +\end_inset + + poljubna. + Naj bo +\begin_inset Formula $V\coloneqq\left(f\left(a\right)-\varepsilon,f\left(a\right)+\varepsilon\right)$ +\end_inset + + odprta množica. + Po predpostavki sledi, + da je +\begin_inset Formula $f^{-1}\left(V\right)$ +\end_inset + + spet odprta. + Ker je +\begin_inset Formula $a\in f^{-1}\left(V\right)$ +\end_inset + +, + je +\begin_inset Formula $a\in V$ +\end_inset + +. + Ker je +\begin_inset Formula $V$ +\end_inset + + odprta, + +\begin_inset Formula $\exists\delta>0\ni:\left(a-\delta,a+\delta\right)\in V$ +\end_inset + +. + Torej +\begin_inset Formula $\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + +, + torej je +\begin_inset Formula $f$ +\end_inset + + zvezna na +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\left(\Rightarrow\right)$ +\end_inset + + Predpostavimo, + da je +\begin_inset Formula $f$ +\end_inset + + zvezna na +\begin_inset Formula $D$ +\end_inset + +, + to pomeni +\begin_inset Formula $\forall a\in D\forall\varepsilon>0\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + +. + Naj bo +\begin_inset Formula $V$ +\end_inset + + poljubna odprta podmnožica +\begin_inset Formula $\mathbb{R}$ +\end_inset + + in naj bo +\begin_inset Formula $a\in f^{-1}\left(V\right)$ +\end_inset + + poljuben (torej +\begin_inset Formula $f\left(a\right)\in V$ +\end_inset + +). + Ker je +\begin_inset Formula $f\left(a\right)\in V$ +\end_inset + +, + ki je odprta, + +\begin_inset Formula $\exists\varepsilon>0\ni:\left(f\left(a\right)-\varepsilon,f\left(a\right)+\varepsilon\right)\subseteq V$ +\end_inset + +. + Ker je +\begin_inset Formula $f$ +\end_inset + + zvezna v +\begin_inset Formula $a$ +\end_inset + +, + +\begin_inset Formula $\exists\delta>0\forall x\in D:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + +, + torej je tudi neka odprta okolica +\begin_inset Formula $f\left(a\right)$ +\end_inset + + v +\begin_inset Formula $f^{-1}\left(V\right)$ +\end_inset + +. + Ker je bil +\begin_inset Formula $a$ +\end_inset + + poljuben, + je +\begin_inset Formula $f^{-1}\left(V\right)$ +\end_inset + + odprta, + ker je bila +\begin_inset Formula $V$ +\end_inset + + poljubna, + je izrek dokazan. +\end_layout + +\end_deeper +\begin_layout Theorem* +Naj bosta +\begin_inset Formula $f,g:D\to\mathbb{R}$ +\end_inset + + zvezni v +\begin_inset Formula $a\in D$ +\end_inset + +. + Tedaj so v +\begin_inset Formula $a$ +\end_inset + + zvezne tudi funkcije +\begin_inset Formula $f+g,f-g,f\cdot g$ +\end_inset + + in +\begin_inset Formula $f/g$ +\end_inset + +, + slednja le, + če je +\begin_inset Formula $g\left(a\right)\not=0$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Ker je +\begin_inset Formula $f$ +\end_inset + + zvezna v +\begin_inset Formula $a$ +\end_inset + + po +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{kzzz}{izreku o karakterizaciji zveznosti z zaporedji} +\end_layout + +\end_inset + + velja za vsako +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}},\forall n\in\mathbb{N}:a_{n}\subset D,\lim_{n\to\infty}a_{n}=a$ +\end_inset + + tudi +\begin_inset Formula $\lim_{n\to\infty}f\left(a_{n}\right)=f\left(a\right)$ +\end_inset + +. + Po +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{pmkdlim}{izreku iz poglavja o zaporedjih} +\end_layout + +\end_inset + + velja, + da +\begin_inset Formula $f\left(a_{n}\right)*g\left(a_{n}\right)\to\left(f*g\right)\left(a_{n}\right)$ +\end_inset + + za +\begin_inset Formula $*\in\left\{ +,-,\cdot,/\right\} $ +\end_inset + +. + Zopet uporabimo izrek o karakterizaciji zveznosti z zaporedji, + ki pove, + da so tudi +\begin_inset Formula $f*g$ +\end_inset + + za +\begin_inset Formula $*\in\left\{ +,-,\cdot,/\right\} $ +\end_inset + + zvezne v +\begin_inset Formula $a$ +\end_inset + +. + Pri deljenju velja omejitev +\begin_inset Formula $f\left(a\right)\not=0$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Če sta +\begin_inset Formula $D,E\subseteq\mathbb{R}$ +\end_inset + + in +\begin_inset Formula $f:D\to E$ +\end_inset + + in +\begin_inset Formula $g:E\to\mathbb{R}$ +\end_inset + +, + je +\begin_inset Formula $g\circ f:D\to\mathbb{R}$ +\end_inset + +. + Hkrati pa, + če je +\begin_inset Formula $f$ +\end_inset + + zvezna v +\begin_inset Formula $a$ +\end_inset + + in +\begin_inset Formula $g$ +\end_inset + + zvezna v +\begin_inset Formula $f\left(a\right)$ +\end_inset + +, + je +\begin_inset Formula $g\circ f$ +\end_inset + + zvezna v +\begin_inset Formula $a$ +\end_inset + +. +\begin_inset Foot +status open + +\begin_layout Plain Layout +Velja +\begin_inset Formula $\left(g\circ f\right)\left(x\right)=g\left(f\left(x\right)\right)$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Proof +Vzemimo poljubno +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}}\subseteq D$ +\end_inset + +, + da +\begin_inset Formula $a_{n}\to a\in D$ +\end_inset + +. + Zopet uporabimo +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +hyperlink{kzzz}{izrek o karakterizaciji zveznosti z zaporedji} +\end_layout + +\end_inset + +: + ker je +\begin_inset Formula $f$ +\end_inset + + zvezna, + velja +\begin_inset Formula $f\left(a_{n}\right)\to f\left(a\right)$ +\end_inset + + in ker je +\begin_inset Formula $g$ +\end_inset + + zvezna, + velja +\begin_inset Formula $g\left(f\left(a_{n}\right)\right)\to g\left(f\left(a\right)\right)$ +\end_inset + +. + Potemtakem +\begin_inset Formula $\left(g\circ f\right)\left(a_{n}\right)\to\left(g\circ f\right)\left(a\right)$ +\end_inset + + in po istem izreku je +\begin_inset Formula $g\circ f$ +\end_inset + + zvezna na +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_layout Theorem* +Vsi polinomi so zvezni na +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Vzemimo +\begin_inset Formula $p\left(x\right)=\sum_{k=0}^{n}a_{k}k^{k}$ +\end_inset + +. + Uporabimo prejšnji izrek. + Polinom je sestavljen iz vsote konstantne funkcije, + zmnožene z identiteto, + ki je s seboj +\begin_inset Formula $n-$ +\end_inset + +krat množena. + Ker vsota in množenje ohranjata zveznost, + je treba dokazati le, + da je +\begin_inset Formula $f\left(x\right)=x$ +\end_inset + + zvezna in da so +\begin_inset Formula $\forall c\in\mathbb{R}:f\left(x\right)=c$ +\end_inset + + zvezne. +\end_layout + +\begin_deeper +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $f\left(x\right)=x$ +\end_inset + + Ali velja +\begin_inset Formula $\forall\varepsilon>0\exists\delta>0\ni:\forall x\in\mathbb{R}:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-f\left(a\right)\right|<\varepsilon$ +\end_inset + +? + Da, + velja. + Vzamemo lahko katerokoli +\begin_inset Formula $\delta\in(0,\varepsilon]$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $f\left(x\right)=c$ +\end_inset + + Naj bo +\begin_inset Formula $c\in\mathbb{R}$ +\end_inset + + poljuben. + Tu je +\begin_inset Formula $\left|f\left(x\right)-f\left(a\right)\right|=\left|c-c\right|=0$ +\end_inset + +, + torej je desna stran implikacije vedno resnična, + torej je implikacija vedno resnična. +\end_layout + +\end_deeper +\begin_layout Theorem* +Vse elementarne funkcije so na njihovih definicijskih območjih povsod zvezne. + To so: + polinomi, + potence, + racionalne funkcije, + koreni, + eksponentne funkcije, + logaritmi, + trigonometrične, + ciklometrične in kombinacije neskončno mnogo naštetih, + spojenih s +\begin_inset Formula $+,-,\cdot,/,\circ$ +\end_inset + +. +\end_layout + +\begin_layout Proof +Tega izreka ne bomo dokazali. +\end_layout + +\begin_layout Example* +\begin_inset Formula $f\left(x\right)\coloneqq\log\left(\sin^{3}x+\frac{1}{8}\right)+\frac{1}{\sqrt[4]{x-7}}$ +\end_inset + + je zvezna povsod, + kjer je definirana. +\end_layout + +\begin_layout Definition* +Naj bo +\begin_inset Formula $\varepsilon>0,a\in\mathbb{R}$ +\end_inset + + in +\begin_inset Formula $f:\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} \to\mathbb{R}$ +\end_inset + +. + Pravimo, + da je +\begin_inset Formula $L\in\mathbb{R}$ +\end_inset + + limita +\begin_inset Formula $f$ +\end_inset + + v točki +\begin_inset Formula $a$ +\end_inset + + (zapišemo +\begin_inset Formula $L=\lim_{x\to a}f\left(x\right)$ +\end_inset + +), + če za vsako zaporedje +\begin_inset Formula $\left(a_{n}\right)_{n\in\mathbb{N}},a_{n}\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} $ +\end_inset + +, + za katero velja +\begin_inset Formula $a_{n}\to a$ +\end_inset + +, + velja +\begin_inset Formula $f\left(a_{n}\right)\to L$ +\end_inset + + +\end_layout + +\begin_layout Definition* +ZDB če +\begin_inset Formula $\forall\varepsilon>0\exists\delta>0\ni:\left|x-a\right|<\delta\Rightarrow\left|f\left(x\right)-L\right|<\varepsilon$ +\end_inset + + +\end_layout + +\begin_layout Definition* +ZDB če za +\begin_inset Formula $\overline{f}:\left(a-\varepsilon,a+\varepsilon\right)\to\mathbb{R}$ +\end_inset + + s predpisom +\begin_inset Formula $\overline{f}\left(x\right)\coloneqq\begin{cases} +f\left(x\right) & ;x\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} \\ +L & ;x\in a +\end{cases}$ +\end_inset + + velja, + da je zvezna v +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Note* +Vrednost +\begin_inset Formula $f\left(a\right)$ +\end_inset + +, + če sploh obstaja, + nima vloge pri vrednosti limite. +\end_layout + +\begin_layout Corollary* +Naj bo +\begin_inset Formula $a\in D\subseteq\mathbb{R}$ +\end_inset + + in +\begin_inset Formula $f:D\to\mathbb{R}$ +\end_inset + +. + +\begin_inset Formula $f$ +\end_inset + + je zvezna v +\begin_inset Formula $a\Leftrightarrow\lim_{x\to a}f\left(x\right)=f\left(a\right)$ +\end_inset + +. +\end_layout + +\begin_layout Example* +Naj bo +\begin_inset Formula $f:\mathbb{R}\setminus\left\{ 0\right\} \to\mathbb{R}$ +\end_inset + + s predpisom +\begin_inset Formula $x\mapsto\frac{\sin x}{x}$ +\end_inset + +. + Zanima nas, + ali obstaja +\begin_inset Formula $\lim_{x\to0}f\left(x\right)$ +\end_inset + +. + Grafični dokaz. +\end_layout + +\begin_layout Example* +\begin_inset Float figure +placement document +alignment document +wide false +sideways false +status open + +\begin_layout Plain Layout +TODO XXX FIXME SKICA S TKZ EUCLID, + glej ZVZ III/ANA1P1120/str.8 +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +Skica. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + +Očitno velja +\begin_inset Formula $\triangle ABD\subset$ +\end_inset + + krožni izsek +\begin_inset Formula $DAB\subset\triangle ABC$ +\end_inset + +, + torej za njihove ploščine velja +\begin_inset Formula +\[ +\frac{\sin x}{2}\leq\frac{x}{2\pi}\cdot x=\frac{x}{2}\leq\frac{\tan x}{2}\quad\quad\quad\quad/\cdot\frac{2}{\sin x} +\] + +\end_inset + + +\begin_inset Formula +\[ +1\leq\frac{x}{\sin x}\leq\frac{1}{\cos x}\quad\quad\quad\quad/\lim_{x\to0} +\] + +\end_inset + + +\begin_inset Formula +\[ +\lim_{x\to0}1\leq\lim_{x\to0}\frac{x}{\sin x}\leq\lim_{x\to0}\frac{1}{\cos x} +\] + +\end_inset + + +\begin_inset Formula +\[ +1\leq\lim_{x\to0}\frac{x}{\sin x}\leq1 +\] + +\end_inset + + +\begin_inset Formula +\[ +\lim_{x\to0}\frac{x}{\sin x}=1 +\] + +\end_inset + +Da naš sklep res potrdimo, + je potreben spodnji izrek. +\end_layout + +\begin_layout Theorem* +Če za +\begin_inset Formula $f,g,h:D\to\mathbb{R}$ +\end_inset + + velja za +\begin_inset Formula $a\in D$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Itemize +\begin_inset Formula $\exists\varepsilon>0\forall x\in\left(a-\varepsilon,a+\varepsilon\right)\setminus\left\{ a\right\} :f\left(x\right)\leq g\left(x\right)\leq h\left(x\right)$ +\end_inset + + in hkrati +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\exists\lim_{x\to a}f\left(x\right),\lim_{x\to a}h\left(x\right)$ +\end_inset + + in +\begin_inset Formula $\lim_{x\to a}f\left(x\right)=\lim_{x\to a}h\left(x\right)=1$ +\end_inset + +, + tedaj tudi +\begin_inset Formula $\exists\lim_{x\to a}g\left(x\right)$ +\end_inset + + in +\begin_inset Formula $\lim_{x\to a}g\left(x\right)=1$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Proof +TODO XXX FIXME DOKAZ V SKRIPTi +\end_layout + +\begin_layout Example* +\begin_inset Formula $\lim_{x\to0}\frac{1}{1+e^{1/x}}$ +\end_inset + + ne obstaja. + Zakaj? + Izračunajmo levo in desno limito: +\begin_inset Formula +\[ +\lim_{x\searrow0}\frac{1}{1+e^{1/x}}=0,\lim_{x\nearrow0}\frac{1}{1+e^{1/x}}=1 +\] + +\end_inset + +Toda +\begin_inset Formula $\exists\lim_{x\to a}f\left(x\right)\Leftrightarrow\exists\lim_{x\nearrow a}f\left(x\right)\wedge\exists\lim_{x\searrow a}f\left(x\right)\wedge\lim_{x\nearrow a}f\left(x\right)=\lim_{x\searrow a}f\left(x\right)$ +\end_inset + +. +\end_layout + +\begin_layout Definition* +Označimo +\begin_inset Formula $\lim_{x\searrow a}f\left(x\right)\eqqcolon f\left(a+0\right),\lim_{x\nearrow a}f\left(x\right)\eqqcolon f\left(a-0\right)$ +\end_inset + +. + Če +\begin_inset Formula $\exists f\left(a+0\right)$ +\end_inset + + in +\begin_inset Formula $\exists f\left(a-0\right)$ +\end_inset + +, + vendar +\begin_inset Formula $f\left(a+0\right)\not=f\left(a-0\right)$ +\end_inset + +, + pravimo, + da ima +\begin_inset Formula $f$ +\end_inset + + v točki +\begin_inset Formula $a$ +\end_inset + + +\begin_inset Quotes gld +\end_inset + +skok +\begin_inset Quotes grd +\end_inset + +. +\end_layout + +\begin_layout Corollary* +sssssssssss \end_layout \begin_layout Corollary* |