summaryrefslogtreecommitdiffstats
path: root/šola/la/kolokvij2.lyx
blob: c52bc9733b0e1729ebcf69f6393338fcb4ae7abc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\begin_preamble
\usepackage{siunitx}
\usepackage{pgfplots}
\usepackage{listings}
\usepackage{multicol}
\sisetup{output-decimal-marker = {,}, quotient-mode=fraction, output-exponent-marker=\ensuremath{\mathrm{3}}}
\end_preamble
\use_default_options true
\begin_modules
enumitem
\end_modules
\maintain_unincluded_children false
\language slovene
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification false
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1cm
\topmargin 2cm
\rightmargin 1cm
\bottommargin 2cm
\headheight 1cm
\headsep 1cm
\footskip 1cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style german
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header

\begin_body

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
newcommand
\backslash
euler{e}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{multicols}{2}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\left(AB\right)^{T}=B^{T}+A^{T}$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $E_{ij}\left(\alpha\right)\coloneqq\texttt{i+=\ensuremath{\alpha}j}$
\end_inset

, 
\begin_inset Formula $P_{ij}\coloneqq\texttt{i,j=j,i}$
\end_inset

, 
\begin_inset Formula $E_{i}\left(\alpha\right)\coloneqq\texttt{i*=\ensuremath{\alpha}}$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $E_{ij}\left(\alpha\right)^{-1}=E_{ij}\left(\alpha\right)$
\end_inset

,
\begin_inset Formula $P_{ij}^{-1}=P_{ji}$
\end_inset

,
\begin_inset Formula $E_{i}\left(\beta\right)^{-1}=E_{i}\left(\beta^{-1}\right)$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\nexists A_{m,n}^{-1}\Leftrightarrow A=0\Leftrightarrow m\not=n\Leftrightarrow\det A=0\Leftrightarrow A$
\end_inset

 ima 
\begin_inset Formula $\vec{0}$
\end_inset

 vrstico/stolpec
\end_layout

\begin_layout Paragraph
Karakterizacija obrnljivih matrik
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{multicols}{2}
\end_layout

\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Argument 1
status open

\begin_layout Plain Layout
label=
\begin_inset Formula $\Leftrightarrow$
\end_inset


\end_layout

\end_inset


\begin_inset Formula $\exists A^{-1}$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $\exists B\ni:BA=I$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $\exists B\ni:AB=I$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $\left(AX=0\Longrightarrow X=0\right)$
\end_inset


\end_layout

\begin_layout Itemize
stolpci so ogrodje
\end_layout

\begin_layout Itemize
\begin_inset Formula $\text{RKSO}\left(A\right)=I$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $\forall\vec{b}\exists\vec{x}\ni:A\vec{x}=\vec{b}$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $A=$
\end_inset

 produkt E.
 M.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
end{multicols}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Plain Layout
\begin_inset Formula $\exists A^{-1}\Longleftrightarrow\exists B\ni:BA=I\Longleftrightarrow\exists B\ni:AB=I\Longleftrightarrow$
\end_inset

 stolpci so LN 
\begin_inset Formula $\Longleftrightarrow\left(AX=0\Longrightarrow X=0\right)\Longleftrightarrow$
\end_inset

stolpci so ogrodje
\begin_inset Formula $\Longleftrightarrow\text{RKSO}\left(A\right)=$
\end_inset


\begin_inset Formula $I\Longleftrightarrow\forall\vec{b}\exists\vec{x}\ni:A\vec{x}=\vec{b}\Longleftrightarrow A=$
\end_inset

produkt E.M.
\end_layout

\end_inset


\end_layout

\begin_layout Standard
Matrični zapis sistema: 
\begin_inset Formula $A\vec{x}=\vec{b}$
\end_inset


\end_layout

\begin_layout Standard
Najkrajša rešitev sistema 
\begin_inset Formula $\vec{x_{0}}\Leftarrow\vert\vert A\vec{x_{0}}-\vec{b}\vert\vert=\min\vert\vert A\vec{x}-\vec{b}\vert\vert$
\end_inset


\end_layout

\begin_layout Standard
...
 je običajna rešitev 
\begin_inset Formula $A^{T}A\vec{x}=A^{T}\vec{b}$
\end_inset


\end_layout

\begin_layout Standard
Desno množenje z E.
 M.
 je manipulacija stoplcev.
\end_layout

\begin_layout Standard
\begin_inset Formula $\det\left[\begin{array}{cc}
a & b\\
c & d
\end{array}\right]=ad-bc$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $A_{i,j}\coloneqq A$
\end_inset

 brez 
\begin_inset Formula $i$
\end_inset

te vrstice in 
\begin_inset Formula $j$
\end_inset

tega stolpca
\end_layout

\begin_layout Standard
\begin_inset Formula $\det[a]=a$
\end_inset

, 
\begin_inset Formula $\det A=\sum_{k=1}^{n}\left(-1\right)^{k+1}a_{1,k}\det A_{1,j}$
\end_inset


\end_layout

\begin_layout Standard
Razvoj po 
\begin_inset Formula $i$
\end_inset

ti vrstici: 
\begin_inset Formula $\det A=\sum_{j=1}^{n}\left(-1\right)^{i+j}a_{ij}\det A_{ij}$
\end_inset


\end_layout

\begin_layout Standard
Razvoj po 
\begin_inset Formula $j$
\end_inset

tem stolpcu: 
\begin_inset Formula $\det A=\sum_{i=1}^{n}\left(-1\right)^{i+j}a_{ij}\det A_{ij}$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\det$
\end_inset

 trikotne matrike: 
\begin_inset Formula $\prod_{i=1}^{n}a_{ii}$
\end_inset


\end_layout

\begin_layout Standard
Trikotna matrika ima pod ali nad diagonalo same ničle.
\end_layout

\begin_layout Standard
\begin_inset Formula $\det\left(P_{ij}A\right)=-detA,\quad\det\left(E_{i}\alpha A\right)=\alpha\det A$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\det\left(E_{ij}\alpha A\right)=\det A,\quad\det\left(AB\right)=\det A\det B$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\det\left[\begin{array}{cc}
A & B\\
0 & C
\end{array}\right]=\det A\det C,\quad\det A^{T}=\det A$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula 
\[
\det A^{n}=\left(\det A\right)^{n}\text{ velja tudi za inverz}
\]

\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\det P_{ij}=-1,\quad\det E_{i}\left(\alpha\right)=\alpha,\quad\det E_{ij}\left(\alpha\right)=1$
\end_inset


\end_layout

\begin_layout Standard
\begin_inset Formula $\det\mathbb{R}^{3}$
\end_inset

: negativne diagonale prištejemo, pozitivne odštejemo
\end_layout

\begin_layout Paragraph
Cramerjevo pravilo
\end_layout

\begin_layout Standard
za rešitev sistema s kvadratno matriko koeficientov: 
\begin_inset Formula $x_{i}=\frac{\det A_{i}\left(\vec{b}\right)}{\det A}$
\end_inset

, kjer je 
\begin_inset Formula $A_{i}\left(\vec{b}\right)$
\end_inset

 matrika 
\begin_inset Formula $A$
\end_inset

, ki ima namesto 
\begin_inset Formula $i$
\end_inset

-tega stolpca 
\begin_inset Formula $\vec{b}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Inverz matrike
\end_layout

\begin_layout Standard
\begin_inset Formula $A_{ij}^{-1}=\frac{\det A_{ji}\left(-1\right)^{j+i}}{\det A}=\frac{1}{\det A}\tilde{A}^{T}$
\end_inset

, kjer je 
\begin_inset Formula $\tilde{A}$
\end_inset

 kofaktorska matrika: 
\begin_inset Formula $\tilde{A_{ij}}=\det A_{ji}\left(-1\right)^{i+j}$
\end_inset

.
\end_layout

\begin_layout Paragraph
Algebrske strukture
\end_layout

\begin_layout Standard
grupoid: 
\begin_inset Formula $\left(M\not=\emptyset,\circ:\text{M\ensuremath{\times M\to M}}\right)$
\end_inset

, 
\series bold
polgrupa
\series default
 je asociativen grupoid, 
\series bold
monoid
\series default
 je polgrupa z enoto, 
\series bold
grupa 
\series default
je monoid z inverzom za vsak element, 
\series bold
abelova grupa
\series default
 je komutativna.
\end_layout

\begin_layout Standard
Desna enota: 
\begin_inset Formula $a\circ e=a$
\end_inset

.
 Če je leva in desna, je enota.
 Grupoid ima kvečjemu eno enoto.
 Če je več levih, desne ni.
\end_layout

\begin_layout Standard
Desni inverz: 
\begin_inset Formula $a\circ a^{-1}=e$
\end_inset

.
 Če je levi in desni, je inverz.
 Inverz je enoličen.
 V monoidu je levi tudi desni.
\end_layout

\begin_layout Standard
Ko je 
\begin_inset Formula $\left(M,\circ\right)$
\end_inset

 grupoid in 
\begin_inset Formula $N\subset M,N\not=\emptyset$
\end_inset

, je 
\begin_inset Formula $N$
\end_inset

 
\series bold
podgrupoid
\series default
, če 
\begin_inset Formula $\forall a,b\in N:a\circ b\in N$
\end_inset

.
 
\begin_inset Formula $N$
\end_inset

 podeduje 
\begin_inset Formula $\circ$
\end_inset

 v 
\begin_inset Formula $\circ_{N}:N\times N\to N$
\end_inset

.
 
\begin_inset Formula $\circ_{N}$
\end_inset

 ohrani komutativnost in asociativnost.
 Enota se ne ohrani vedno, inverzi se ne ohranijo vedno.
\end_layout

\begin_layout Standard
Ko je 
\begin_inset Formula $\left(M,\circ\right)$
\end_inset

 polgrupa, 
\begin_inset Formula $N$
\end_inset

 podgrupoid, je 
\series bold

\begin_inset Formula $N$
\end_inset

 podpolgrupa
\series default
.
\end_layout

\begin_layout Standard
Ko je 
\begin_inset Formula $\left(M,\circ\right)$
\end_inset

 monoid in 
\begin_inset Formula $N$
\end_inset

 podgrupoid, je 
\begin_inset Formula $N$
\end_inset

 
\series bold
podmonoid
\series default
, če vsebuje enoto 
\begin_inset Formula $\left(M,\circ\right)$
\end_inset

 (da, prav tisto).
\end_layout

\begin_layout Standard
Ko je 
\begin_inset Formula $\left(M,\circ\right)$
\end_inset

 grupa in 
\begin_inset Formula $N$
\end_inset

 podmonoid, je 
\begin_inset Formula $N$
\end_inset

 
\series bold
podgrupa
\series default
, če vsebuje inverze vseh svojih elementov.
\end_layout

\begin_layout Standard
\begin_inset Formula $N\not=\emptyset$
\end_inset

 je 
\series bold
podgrupa 
\series default

\begin_inset Formula $\left(M,\circ\right)$
\end_inset

, ko 
\begin_inset Formula $a,b\in N\Rightarrow a\circ b^{-1}\in N$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset Formula $GL_{n}$
\end_inset

 je grupa vseh obrnljivih matrik z množenjem matrik, 
\begin_inset Formula $O_{n}$
\end_inset

 je grupa matrik, kjer 
\begin_inset Formula $A^{T}=A^{-1}$
\end_inset

 (ortogonalne), 
\begin_inset Formula $SL_{n}$
\end_inset

 je grupa matrik z 
\begin_inset Formula $\det A=1$
\end_inset

, 
\begin_inset Formula $SO_{n}$
\end_inset

 je grupa ortogonalnih matrik z 
\begin_inset Formula $\det A=1$
\end_inset

.
\end_layout

\begin_layout Paragraph
Homomorfizem
\end_layout

\begin_layout Standard
grupoidov in polgrup 
\begin_inset Formula $\left(M_{1},\circ_{1}\right),\left(M_{2},\circ_{2}\right)$
\end_inset

 je 
\begin_inset Formula $f:M_{1}\to M_{2}\ni:\forall a,b\in M_{1}:\left(f\left(a\circ_{1}b\right)=f\left(a\right)\circ_{2}f\left(b\right)\right)$
\end_inset

.
\end_layout

\begin_layout Standard
Homomorfizem monoidov mora imeti še lastnost 
\begin_inset Formula $f\left(e_{1}\right)=e_{2}$
\end_inset

, homomorfizem grup pa lastnost 
\begin_inset Formula $f\left(a^{-1}\right)=f\left(a\right)^{-1}$
\end_inset

.
\end_layout

\begin_layout Standard
Kompozitum homomorfizmov je homomorfizem.
\end_layout

\begin_layout Standard

\series bold
Izomorfizem
\series default
 je bijektiven homomorfizem.
 Med izomorfnima grupama obstaja izomorfizem.
\end_layout

\begin_layout Standard
\begin_inset Formula $\left(M,+,\cdot\right)$
\end_inset

 je 
\series bold
bigrupoid
\series default
, ko sta 
\begin_inset Formula $\left(M,+\right)$
\end_inset

 in 
\begin_inset Formula $\left(M,\cdot\right)$
\end_inset

 grupoida.
\end_layout

\begin_layout Standard

\series bold
Distributiven bigrupoid 
\series default
ima 
\series bold
po eno
\series default
 L in D distributivnost in je 
\series bold
polkolobar
\series default
, če je 
\begin_inset Formula $\left(M,+\right)$
\end_inset

 komutativna polgrupa.
\end_layout

\begin_layout Standard

\series bold
Kolobar
\series default
 je distri.
 bigrupoid, kjer je 
\series bold

\begin_inset Formula $\left(M,+\right)$
\end_inset

 
\series default
abelova grupa.
\end_layout

\begin_layout Standard
Pri 
\series bold
asociativnem kolobarju 
\series default
je 
\begin_inset Formula $\left(M,\cdot\right)$
\end_inset

 polgrupa.
 Lemut pravi, da je to pogoj že za kolobarje, Cimprič pa ne.
\end_layout

\begin_layout Standard
Pri 
\series bold
asociativnem kolobarju z enoto 
\series default
je 
\begin_inset Formula $\left(M,\cdot\right)$
\end_inset

 monoid.
\end_layout

\begin_layout Standard

\series bold
Obseg
\series default
 je kolobar z enoto za množenje 
\series bold

\begin_inset Formula $1$
\end_inset

 
\series default
in inverzom za množenje za vsak neničeln element (
\begin_inset Formula $0$
\end_inset

 je enota za 
\begin_inset Formula $+$
\end_inset

).
\end_layout

\begin_layout Standard

\series bold
Komutativen kolobar
\series default
 ima komutativno množenje.
\end_layout

\begin_layout Standard

\series bold
Polje 
\series default
je komutativen obseg.
\end_layout

\begin_layout Standard

\series bold
Podbigrupoid 
\series default
je 
\begin_inset Formula $N\subset M$
\end_inset

, zaprta za 
\begin_inset Formula $+$
\end_inset

 in 
\begin_inset Formula $\cdot$
\end_inset

.
\end_layout

\begin_layout Standard

\series bold
Podkolobar
\series default
 je 
\begin_inset Formula $N\subset M$
\end_inset

, da je 
\begin_inset Formula $N$
\end_inset

 podgrupa 
\begin_inset Formula $\left(M,+\right)$
\end_inset

 in podgrupoid 
\begin_inset Formula $\left(M,\cdot\right)$
\end_inset

 – 
\begin_inset Formula $N$
\end_inset

 zaprta za odštevanje in množenje.
\end_layout

\begin_layout Standard

\series bold
Podobseg
\series default
 je podkolobar, kjer je 
\begin_inset Formula $N\backslash\left\{ 0\right\} $
\end_inset

 podgrupa 
\begin_inset Formula $\left(M\backslash\left\{ 0\right\} ,\cdot\right)$
\end_inset

.
 
\begin_inset Formula $0$
\end_inset

 namreč ni obrnljiva – 
\begin_inset Formula $N$
\end_inset


 zaprta za 
\begin_inset Formula $-$
\end_inset

 in deljenje.
\end_layout

\begin_layout Standard

\series bold
Homomorfizem kolobarjev
\series default
 je 
\begin_inset Formula $f:M_{1}\to M_{2}\ni:f\left(a+_{1}b\right)=f\left(a\right)+_{2}f\left(b\right)\wedge f\left(a\cdot_{1}b\right)=f\left(a\right)\cdot_{2}f\left(b\right)$
\end_inset


\end_layout

\begin_layout Standard

\series bold
Homomorfizem kolobarjev z enoto 
\series default
dodatno 
\begin_inset Formula $f\left(1_{1}\right)=1_{2}$
\end_inset


\end_layout

\begin_layout Paragraph
Vektorski prostor
\end_layout

\begin_layout Standard
je Abelova grupa z množenjem s skalarjem.
 
\begin_inset Formula $F$
\end_inset

 je polje, za prostor 
\begin_inset Formula $\left(V,+,\cdot\right)$
\end_inset

 nad 
\begin_inset Formula $F$
\end_inset

 velja:
\end_layout

\begin_layout Itemize
\begin_inset Formula $\left(V,+\right)$
\end_inset

 je Abelova grupa
\end_layout

\begin_layout Itemize
\begin_inset Formula $\alpha\cdot\left(a+b\right)=\alpha\cdot a+\alpha\cdot b,\quad\left(\alpha+\beta\right)\cdot a=\alpha\cdot a+\beta\cdot a$
\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Formula $\left(\alpha\cdot\beta\right)\cdot a=\alpha\cdot\left(\beta\cdot a\right),\quad1\cdot a=a$
\end_inset


\end_layout

\begin_layout Standard

\series bold
Direktna vsota vektorskih prostorov
\series default
 je vektorski prostor.
 
\begin_inset Formula $V_{1}\oplus V_{2}$
\end_inset

 so pari 
\begin_inset Formula $\left(v_{1},v_{2}\right)$
\end_inset

.
 
\begin_inset Formula $\left(v_{1},v_{2}\right)+\left(v_{1}',v_{2}'\right)=\left(v_{1}+v_{1}',v_{2}+v_{2}'\right)$
\end_inset

, 
\begin_inset Formula $\alpha\cdot\left(v_{1},v_{2}\right)=\left(\alpha\cdot v_{1},\alpha\cdot v_{2}\right)$
\end_inset

.
\end_layout

\begin_layout Paragraph
Vektorski podprostor
\end_layout

\begin_layout Standard
je 
\begin_inset Formula $W\subseteq V,W\not=\emptyset$
\end_inset

, zaprta za seštevanje in množenje s skalarjem.
 Oziroma taka, da vsebuje vse svoje linearne kombinacije — 
\begin_inset Formula $\forall a,b\in W\forall\alpha,\beta\in F:\alpha a+\beta b\in W$
\end_inset

.
 Vsak podprostor vsebuje 0.
 
\series bold
Presek podprostorov
\series default
 je tudi sam podprostor.
 
\series bold
Vsota podprostorov
\series default
 (
\begin_inset Formula $W_{1}+W_{2}=\left\{ w_{1}+w_{2};w_{1}\in W_{1},w_{2}\in W_{2}\right\} $
\end_inset

) je tudi sama podprostor.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
end{multicols}
\end_layout

\end_inset


\end_layout

\end_body
\end_document