summaryrefslogblamecommitdiffstats
path: root/mat/formule.tex
blob: 48d0cc27bee67688ef3eb6b3f9adce1e53303e3f (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13












                                                 
                    















                                                                                                           
               






                                                                                                                      
                                    
                    
                                      
                      
                                                                                                                                                          
                      
                                                                                                                                                          
                      
                                                                                                                                                          
                      
                                                                                                                                                          
                      


                                                                                                                                                          
































                                                                                                                                                                                                                            
                                                                                              



                                                               
               
                                          























                                                                                                                                               
                                                  
               







                                                                                                                                                                                                      









                                                                                                                                                                 
% do-vimlatex-onwrite
\documentclass[]{article}
\usepackage[utf8]{inputenc}
\usepackage{siunitx}
\usepackage[slovene]{babel}
\usepackage[inline]{enumitem}
\usepackage[a4paper, total={7in, 10in}]{geometry}
\usepackage{hologo}
\usepackage[hidelinks,unicode]{hyperref}
\usepackage{datetime}
\usepackage{tkz-euclide}
\usepackage{amssymb}
\usepackage{multicol}
\usepackage{amsmath}
% \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, per-mode=fraction}	% frac način
% \sisetup{output-decimal-marker = {,}, quotient-mode=fraction, per-mode=symbol}	% poševnica način
\sisetup{output-decimal-marker = {,}, quotient-mode=fraction}				% na -1 način
\settimeformat{hhmmsstime}
\newcommand{\razhroscevanje}{0}
\newcommand{\razhroscevanjeg}{0} % grafično razhroščevanje
\makeatletter
\newcommand{\xslalph}[1]{\expandafter\@xslalph\csname c@#1\endcsname}
\newcommand{\@xslalph}[1]{%
	\ifcase#1\or a\or b\or c\or \v{c}\or d\or e\or f\or g\or h\or i%
	\or j\or k\or l\or m\or n\or o\or p\or r\or s\or \v{s}%
	\or t\or u\or v\or z\or \v{z}
	\else\@ctrerr\fi%
}
\AddEnumerateCounter{\xslalph}{\@xslalph}{m}
\makeatother
\title{Formule}
\author{Anton Luka Šijanec, 3. a}
\begin{document}
\maketitle
% \begin{abstract}
% Spisek izbranih trigonometričnih izrekov bom kot pripomoček imel na drugem testu pri matematiki v tretjem letniku.
% \end{abstract}
% \tableofcontents
\section{Trigonometrija: Drugi test}
\begin{multicols}{2}
	\begin{tabular}{|c|c|c|c|c|c|}
		\hline
		$\measuredangle$	& Rad		& $\sin$		& $\cos$		& $\tan$		& $\cot$		\\
		\hline
		$\ang{0}$		& 0		& 0			& 1			& 0			& ne obstaja		\\
		\hline
		$\ang{30}$		&$\frac{\pi}{6}$& $\frac{1}{2}$		& $\frac{\sqrt{3}}{2}$	& $\frac{\sqrt{3}}{2}$	& $\sqrt{3}$		\\
		\hline
		$\ang{45}$		& $\frac{\pi}{4}$& $\frac{\sqrt{2}}{2}$	& $\frac{\sqrt{2}}{2}$	& 1			& 1			\\
		\hline
		$\ang{60}$		& $\frac{\pi}{3}$& $\frac{\sqrt{3}}{2}$	& $\frac{1}{2}$		& $\sqrt{3}$		& $\frac{\sqrt{3}}{3}$	\\
		\hline
		$\ang{90}$		& $\frac{\pi}{2}$& 1			& 0			& ne obstaja		& 0			\\
		\hline
	\end{tabular}
	$$\sin^2\alpha+\cos^2\alpha=1$$
	$$\sin\alpha=\pm\sqrt{1-\cos^2\alpha}$$
	$$\cos\alpha=\pm\sqrt{1-\sin^2\alpha}$$
	$\sin, \tan, \cot$ so lihe, $\cos$ je soda.
	$$\sin\left(-\alpha\right)=-\sin\alpha$$
	$$\cos\left(-\alpha\right)=\cos\alpha$$
	$$\sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$$
	$$\cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$$
	$$\tan\left(\frac{\pi}{2}-\alpha\right)=\cot\alpha$$
	$$\sin\left(\alpha\pm\beta\right)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta$$
	$$\cos\left(\alpha\pm\beta\right)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$$
	$$\tan\left(\alpha\pm\beta\right)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta}$$
	$$\cot\left(\alpha\pm\beta\right)=\frac{\cot\alpha\cot\beta\mp1}{\cot\beta\pm\cot\alpha}$$
	$$\sin2\alpha=2\sin\alpha\cos\alpha$$
	$$\cos2\alpha=cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha$$
	$$\tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}$$
	$$\cot2\alpha=\frac{\cot^2\alpha-1}{2\cot\alpha}$$
	$$\sin3\alpha=3\sin\alpha-4\sin^3\alpha=4\sin\left(\frac{\pi}{3}-\alpha\right)\sin\left(\frac{\pi}{3}+\alpha\right)$$
	$$\cos3\alpha=4\cos^3\alpha-3\cos\alpha=4\cos\alpha\cos\left(\frac{\pi}{3}-\alpha\right)\cos\left(\frac{\pi}{3}+\alpha\right)$$
	$$\tan3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}=\tan\alpha\tan\left(\frac{\pi}{3}-\alpha\right)\tan\left(\frac{\pi}{3}+\alpha\right)$$
	$$\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}$$
	$$\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}$$
	$$\tan\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}=\frac{\sin\alpha}{1+\cos\alpha}$$
	$$2\cos\alpha\cos\beta=\cos\left(\alpha-\beta\right)+\cos\left(\alpha+\beta\right)$$
	$$2\sin\alpha\sin\beta=\pm\cos\left(\alpha\pm\beta\right)-\cos\left(\alpha\mp\beta\right)$$
	$$2\sin\alpha\cos\beta=\sin\left(\alpha+\beta\right)+\sin\left(\alpha-\beta\right)$$
	$$2\cos\alpha\sin\beta=\sin\left(\alpha+\beta\right)-\sin\left(\alpha-\beta\right)$$
	$$\tan\alpha\tan\beta=1-\frac{\tan\alpha+\tan\beta}{\tan\left(\alpha+\beta\right)}=\frac{\cos\left(\alpha-\beta\right)-\cos\left(\alpha+\beta\right)}{\cos\left(\alpha-\beta\right)+\cos\left(\alpha+\beta\right)}$$
	$$\sin\alpha\pm\sin\beta=2\sin\left(\frac{\alpha\pm\beta}{2}\right)\cos\left(\frac{\alpha\mp\beta}{2}\right)$$
	$$\cos\alpha+\cos\beta=2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$
	$$\cos\alpha-\cos\beta=-2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$$
	$$\tan\alpha\pm\tan\beta=\frac{\sin\left(\alpha\pm\beta\right)}{\cos\alpha\cos\beta}$$
	$$\sin\alpha\cos\alpha=\frac{1}{2}\sin2\alpha$$
	$$2\cos^2\frac{\alpha}{2}=1+\cos\alpha$$
	$$2\sin^2\frac{\alpha}{2}=1-\cos\alpha$$
	$$\tan^2\frac{x}{2}=\frac{1-\cos\alpha}{1+\cos\alpha}$$
\end{multicols}
\section{Trikotniki in krogi: Tretji test}
\begin{multicols}{2}
	$$s=\frac{a+b+c}{2} \wedge S=\sqrt{s(s-a)(s-b)(s-c)}$$
	$$S_\text{trikotnika v izseku}=\frac{r^2\sin\alpha}{2}$$
	$$\frac{a}{\sin\alpha}=\frac{b}{\sin\beta}=\frac{c}{\sin\gamma}=2R$$
	$$a^2=b^2+c^2-2bc\cos\alpha$$
	$$S_\text{paralelograma}=av_a=ab\sin\alpha=\frac{ef}{2}\sin\omega$$
	$$S_\text{romba}=av=a^2\sin\alpha=\frac{ef}{2}$$
	$$S_\text{trapeza}=\frac{v(a+c)}{2}$$
	$$S_\text{deltoida}=\frac{ef}{2}$$
	$$S_\text{trikotnika}=\frac{ab\sin\gamma}{2}=\frac{av_a}{2}$$
	$$S_\text{enakostraničnega}=\frac{a^2\sqrt{3}}{4}$$
	$$\arcsin x+\arccos x=\frac{\pi}{2}$$
	$$S_\text{trikotnika}=\frac{abc}{4R}=2R^2\sin\alpha\sin\beta\sin\gamma=rs\text{, kjer je } s=\frac{a+b+c}{2}$$
	$$Diagonal_\text{pravilnega mnogokotnika}=\frac{n(n-3)}{2}$$
	$$\alpha_\text{pravilnega mnogokotnika}=\frac{n-2}{n}\ang{180}$$
	$$S_\text{pravilnega mnogokotnika}=\frac{n}{2}R^2\sin\frac{\ang{360}}{n}=
		na^2\tan\frac{\alpha}{2}\frac{1}{2}=\frac{na^2}{4\tan\frac{\ang{180}}{n}}$$
	$$\alpha_\text{ene premice}=\arctan k_p$$
	$$\alpha_\text{med dvema premicama}=\arctan\lvert\frac{k_q-k_p}{1+k_p-k_q}\rvert$$
	$$D_\text{arcsin}=D_\text{arccos}=[-1; 1] \wedge V_\text{arcsin}=[\ang{-90}; \ang{90}] \wedge V_\text{arccos}=[\ang{0}; \ang{180}]$$
	$$D_\text{arctan}=D_\text{arccot}=\mathbb{R} \wedge V_\text{arctan}=(\ang{-90}; \ang{90}) \wedge V_\text{arccot}=(\ang{0}; \ang{180})$$
	$$soda(x)=-soda(x) \wedge liha(-x)=-liha(x)$$
	$$f(x)\neq-f(x)\nLeftrightarrow f(-x)=-f(x) \text{ in obratno}$$
	$$f(x)=-f(x) \wedge f(-x)=-f(x) \Leftrightarrow f(x)=0$$
	$$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
\end{multicols}
\section{Trorazsežnostna geometrijska telesa: Četrti test} % todo: funkcije na likih - notranji kot, prisekana piramida, prisekan stožec, kuboktaeder, tetraeder, včartavanje teles v druga telesa
\begin{multicols}{2}
	$$S_\text{odseka}=r^2\pi\frac{\alpha}{\ang{360}}-\frac{r^2\sin\alpha}{2}$$
	$$V_\text{piramide}=\frac{P_\text{osnovna}v}{3}$$
	$$P_\text{stožca}=\frac{s\cdot2\pi r}{2}\text{(špornova fora)}+r^2\pi=r\pi\left(r+s\right)$$
	$$V_\text{stožca}=\frac{r^2v\pi}{3}$$
	$$P_\text{enakostraničnega trikotnika}=\frac{a^2\sqrt{3}}{4}$$
\end{multicols}
\section{Zaključek}
\hologo{LaTeX} izvorna koda dokumenta je objavljena na \url{https://git.sijanec.eu/sijanec/sola-gimb-3}. Za izdelavo dokumenta je potreben \texttt{TeXLive 2020}.
\if\razhroscevanje1
\vfill
\section*{Razhroščevalne informacije}
Konec generiranja dokumenta \today\ ob \currenttime.

Dokument se je generiral R0qK1KR2 \SI{}{\second}. % aaasecgeninsaaa
\fi
\end{document}