1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
|
/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
lazyrite.c
Abstract:
This module implements the lazy writer for the Cache subsystem.
Author:
Tom Miller [TomM] 22-July-1990
Revision History:
--*/
#include "cc.h"
//
// The Bug check file id for this module
//
#define BugCheckFileId (CACHE_BUG_CHECK_LAZYRITE)
//
// Define our debug constant
//
#define me 0x00000020
//
// Local support routines
//
PWORK_QUEUE_ENTRY
CcReadWorkQueue (
);
VOID
CcLazyWriteScan (
);
VOID
CcScheduleLazyWriteScan (
)
/*++
Routine Description:
This routine may be called to schedule the next lazy writer scan,
during which lazy write and lazy close activity is posted to other
worker threads. Callers should acquire the lazy writer spin lock
to see if the scan is currently active, and then call this routine
still holding the spin lock if not. One special call is used at
the end of the lazy write scan to propagate lazy write active once
we go active. This call is "the" scan thread, and it can therefore
safely schedule the next scan without taking out the spin lock.
Arguments:
None
Return Value:
None.
--*/
{
//
// It is important to set the active flag TRUE first for the propagate
// case, because it is conceivable that once the timer is set, another
// thread could actually run and make the scan go idle before we then
// jam the flag TRUE.
//
// When going from idle to active, we delay a little longer to let the
// app finish saving its file.
//
if (LazyWriter.ScanActive) {
KeSetTimer( &LazyWriter.ScanTimer, CcIdleDelay, &LazyWriter.ScanDpc );
} else {
LazyWriter.ScanActive = TRUE;
KeSetTimer( &LazyWriter.ScanTimer, CcFirstDelay, &LazyWriter.ScanDpc );
}
}
VOID
CcScanDpc (
IN PKDPC Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
)
/*++
Routine Description:
This is the Dpc routine which runs when the scan timer goes off. It
simply posts an element for an Ex Worker thread to do the scan.
Arguments:
(All are ignored)
Return Value:
None.
--*/
{
PWORK_QUEUE_ENTRY WorkQueueEntry;
UNREFERENCED_PARAMETER(Dpc);
UNREFERENCED_PARAMETER(DeferredContext);
UNREFERENCED_PARAMETER(SystemArgument1);
UNREFERENCED_PARAMETER(SystemArgument2);
WorkQueueEntry = CcAllocateWorkQueueEntry();
//
// If we failed to allocate a WorkQueueEntry, things must
// be in pretty bad shape. However, all we have to do is
// say we are not active, and wait for another event to
// wake things up again.
//
if (WorkQueueEntry == NULL) {
LazyWriter.ScanActive = FALSE;
} else {
//
// Otherwise post a work queue entry to do the scan.
//
WorkQueueEntry->Function = (UCHAR)LazyWriteScan;
CcPostWorkQueue( WorkQueueEntry, &CcRegularWorkQueue );
}
}
VOID
CcLazyWriteScan (
)
/*++
Routine Description:
This routine implements the Lazy Writer scan for dirty data to flush
or any other work to do (lazy close). This routine is scheduled by
calling CcScheduleLazyWriteScan.
Arguments:
None.
Return Value:
None.
--*/
{
ULONG PagesToWrite, ForegroundRate, EstimatedDirtyNextInterval;
PSHARED_CACHE_MAP SharedCacheMap, FirstVisited;
KIRQL OldIrql;
ULONG LoopsWithLockHeld = 0;
BOOLEAN AlreadyMoved = FALSE;
//
// Top of Lazy Writer scan.
//
try {
//
// If there is no work to do, then we will go inactive, and return.
//
ExAcquireSpinLock( &CcMasterSpinLock, &OldIrql );
if ((CcTotalDirtyPages == 0) && !LazyWriter.OtherWork) {
LazyWriter.ScanActive = FALSE;
ExReleaseSpinLock( &CcMasterSpinLock, OldIrql );
return;
}
//
// Acquire the Lazy Writer spinlock, calculate the next sweep time
// stamp, then update all relevant fields for the next time around.
// Also we can clear the OtherWork flag.
//
LazyWriter.OtherWork = FALSE;
//
// Assume we will write our usual fraction of dirty pages. Do not do the
// divide if there is not enough dirty pages, or else we will never write
// the last few pages.
//
PagesToWrite = CcTotalDirtyPages;
if (PagesToWrite > LAZY_WRITER_MAX_AGE_TARGET) {
PagesToWrite /= LAZY_WRITER_MAX_AGE_TARGET;
}
//
// Estimate the rate of dirty pages being produced in the foreground.
// This is the total number of dirty pages now plus the number of dirty
// pages we scheduled to write last time, minus the number of dirty
// pages we have now. Throw out any cases which would not produce a
// positive rate.
//
ForegroundRate = 0;
if ((CcTotalDirtyPages + CcPagesWrittenLastTime) > CcDirtyPagesLastScan) {
ForegroundRate = (CcTotalDirtyPages + CcPagesWrittenLastTime) -
CcDirtyPagesLastScan;
}
//
// If we estimate that we will exceed our dirty page target by the end
// of this interval, then we must write more. Try to arrive on target.
//
EstimatedDirtyNextInterval = CcTotalDirtyPages - PagesToWrite + ForegroundRate;
if (EstimatedDirtyNextInterval > CcDirtyPageTarget) {
PagesToWrite += EstimatedDirtyNextInterval - CcDirtyPageTarget;
}
//
// Now save away the number of dirty pages and the number of pages we
// just calculated to write.
//
CcDirtyPagesLastScan = CcTotalDirtyPages;
CcPagesYetToWrite = CcPagesWrittenLastTime = PagesToWrite;
//
// Loop to flush enough Shared Cache Maps to write the number of pages
// we just calculated.
//
SharedCacheMap = CONTAINING_RECORD( CcLazyWriterCursor.SharedCacheMapLinks.Flink,
SHARED_CACHE_MAP,
SharedCacheMapLinks );
DebugTrace( 0, me, "Start of Lazy Writer Scan\n", 0 );
//
// Normally we would just like to visit every Cache Map once on each scan,
// so the scan will terminate normally when we return to FirstVisited. But
// in the off chance that FirstVisited gets deleted, we are guaranteed to stop
// when we get back to our own listhead.
//
FirstVisited = NULL;
while ((SharedCacheMap != FirstVisited) &&
(&SharedCacheMap->SharedCacheMapLinks != &CcLazyWriterCursor.SharedCacheMapLinks)) {
if (FirstVisited == NULL) {
FirstVisited = SharedCacheMap;
}
//
// Skip the SharedCacheMap if a write behind request is
// already queued, write behind has been disabled, or
// if there is no work to do (either dirty data to be written
// or a delete is required).
//
// Note that for streams where modified writing is disabled, we
// need to take out Bcbs exclusive, which serializes with foreground
// activity. Therefore we use a special counter in the SharedCacheMap
// to only service these once every n intervals.
//
// Skip temporary files unless we currently could not write 196KB
//
if (!FlagOn(SharedCacheMap->Flags, WRITE_QUEUED | IS_CURSOR)
&&
(((PagesToWrite != 0) && (SharedCacheMap->DirtyPages != 0) &&
(((++SharedCacheMap->LazyWritePassCount & 0xF) == 0) ||
!FlagOn(SharedCacheMap->Flags, MODIFIED_WRITE_DISABLED) ||
(CcCapturedSystemSize == MmSmallSystem) ||
(SharedCacheMap->DirtyPages >= (4 * (MAX_WRITE_BEHIND / PAGE_SIZE)))) &&
(!FlagOn(SharedCacheMap->FileObject->Flags, FO_TEMPORARY_FILE) ||
!CcCanIWrite(SharedCacheMap->FileObject, 0x30000, FALSE, MAXUCHAR)))
||
(SharedCacheMap->OpenCount == 0))) {
PWORK_QUEUE_ENTRY WorkQueueEntry;
//
// If this is a metadata stream with at least 4 times
// the maximum write behind I/O size, then let's tell
// this guy to write 1/8 of his dirty data on this pass
// so it doesn't build up.
//
// Else assume we can write everything (PagesToWrite only affects
// metadata streams - otherwise writing is controlled by the Mbcb).
//
SharedCacheMap->PagesToWrite = SharedCacheMap->DirtyPages;
if (FlagOn(SharedCacheMap->Flags, MODIFIED_WRITE_DISABLED) &&
(SharedCacheMap->PagesToWrite >= (4 * (MAX_WRITE_BEHIND / PAGE_SIZE))) &&
(CcCapturedSystemSize != MmSmallSystem)) {
SharedCacheMap->PagesToWrite /= 8;
}
//
// See if he exhausts the number of pages to write. (We
// keep going in case there are any closes to do.)
//
if ((SharedCacheMap->PagesToWrite >= PagesToWrite) && !AlreadyMoved) {
//
// If we met our write quota on a given SharedCacheMap, then make sure
// we start at him on the next scan, unless it is a metadata stream.
//
RemoveEntryList( &CcLazyWriterCursor.SharedCacheMapLinks );
//
// For Metadata streams, set up to resume on the next stream on the
// next scan.
//
if (FlagOn(SharedCacheMap->Flags, MODIFIED_WRITE_DISABLED)) {
InsertHeadList( &SharedCacheMap->SharedCacheMapLinks, &CcLazyWriterCursor.SharedCacheMapLinks );
//
// For other streams, set up to resume on the same stream on the
// next scan.
//
} else {
InsertTailList( &SharedCacheMap->SharedCacheMapLinks, &CcLazyWriterCursor.SharedCacheMapLinks );
}
PagesToWrite = 0;
AlreadyMoved = TRUE;
} else {
PagesToWrite -= SharedCacheMap->PagesToWrite;
}
//
// Otherwise show we are actively writing, and keep it in the dirty
// list.
//
SetFlag(SharedCacheMap->Flags, WRITE_QUEUED);
SharedCacheMap->DirtyPages += 1;
ExReleaseSpinLock( &CcMasterSpinLock, OldIrql );
//
// Queue the request to do the work to a worker thread.
//
WorkQueueEntry = CcAllocateWorkQueueEntry();
//
// If we failed to allocate a WorkQueueEntry, things must
// be in pretty bad shape. However, all we have to do is
// break out of our current loop, and try to go back and
// delay a while. Even if the current guy should have gone
// away when we clear WRITE_QUEUED, we will find him again
// in the LW scan.
//
if (WorkQueueEntry == NULL) {
ExAcquireSpinLock( &CcMasterSpinLock, &OldIrql );
ClearFlag(SharedCacheMap->Flags, WRITE_QUEUED);
SharedCacheMap->DirtyPages -= 1;
break;
}
WorkQueueEntry->Function = (UCHAR)WriteBehind;
WorkQueueEntry->Parameters.Write.SharedCacheMap = SharedCacheMap;
//
// Post it to the regular work queue.
//
ExAcquireSpinLock( &CcMasterSpinLock, &OldIrql );
SharedCacheMap->DirtyPages -= 1;
CcPostWorkQueue( WorkQueueEntry, &CcRegularWorkQueue );
LoopsWithLockHeld = 0;
//
// Make sure we occassionally drop the lock. Set WRITE_QUEUED
// to keep the guy from going away.
//
} else if ((++LoopsWithLockHeld >= 20) &&
!FlagOn(SharedCacheMap->Flags, WRITE_QUEUED | IS_CURSOR)) {
SetFlag(SharedCacheMap->Flags, WRITE_QUEUED);
SharedCacheMap->DirtyPages += 1;
ExReleaseSpinLock( &CcMasterSpinLock, OldIrql );
LoopsWithLockHeld = 0;
ExAcquireSpinLock( &CcMasterSpinLock, &OldIrql );
ClearFlag(SharedCacheMap->Flags, WRITE_QUEUED);
SharedCacheMap->DirtyPages -= 1;
}
//
// Now loop back.
//
SharedCacheMap =
CONTAINING_RECORD( SharedCacheMap->SharedCacheMapLinks.Flink,
SHARED_CACHE_MAP,
SharedCacheMapLinks );
}
DebugTrace( 0, me, "End of Lazy Writer Scan\n", 0 );
//
// Now we can release the global list and loop back, per chance to sleep.
//
ExReleaseSpinLock( &CcMasterSpinLock, OldIrql );
//
// Now go ahead and schedule the next scan.
//
CcScheduleLazyWriteScan();
//
// Basically, the Lazy Writer thread should never get an exception,
// so we put a try-except around it that bug checks one way or the other.
// Better we bug check here than worry about what happens if we let one
// get by.
//
} except( CcExceptionFilter( GetExceptionCode() )) {
CcBugCheck( GetExceptionCode(), 0, 0 );
}
}
//
// Internal support routine
//
LONG
CcExceptionFilter (
IN NTSTATUS ExceptionCode
)
/*++
Routine Description:
This is the standard exception filter for worker threads which simply
calls an FsRtl routine to see if an expected status is being raised.
If so, the exception is handled, else we bug check.
Arguments:
ExceptionCode - the exception code which was raised.
Return Value:
EXCEPTION_EXECUTE_HANDLER if expected, else a Bug Check occurs.
--*/
{
DebugTrace(0, 0, "CcExceptionFilter %08lx\n", ExceptionCode);
// DbgBreakPoint();
if (FsRtlIsNtstatusExpected( ExceptionCode )) {
return EXCEPTION_EXECUTE_HANDLER;
} else {
return EXCEPTION_CONTINUE_SEARCH;
}
}
//
// Internal support routine
//
VOID
FASTCALL
CcPostWorkQueue (
IN PWORK_QUEUE_ENTRY WorkQueueEntry,
IN PLIST_ENTRY WorkQueue
)
/*++
Routine Description:
This routine queues a WorkQueueEntry, which has been allocated and
initialized by the caller, to the WorkQueue for FIFO processing by
the work threads.
Arguments:
WorkQueueEntry - supplies a pointer to the entry to queue
Return Value:
None
--*/
{
KIRQL OldIrql;
PLIST_ENTRY WorkerThreadEntry = NULL;
ASSERT(FIELD_OFFSET(WORK_QUEUE_ITEM, List) == 0);
DebugTrace(+1, me, "CcPostWorkQueue:\n", 0 );
DebugTrace( 0, me, " WorkQueueEntry = %08lx\n", WorkQueueEntry );
//
// Queue the entry to the respective work queue.
//
ExAcquireFastLock( &CcWorkQueueSpinlock, &OldIrql );
InsertTailList( WorkQueue, &WorkQueueEntry->WorkQueueLinks );
//
// Now, if we have any more idle threads we can use, then activate
// one.
//
if (!IsListEmpty(&CcIdleWorkerThreadList)) {
WorkerThreadEntry = RemoveHeadList( &CcIdleWorkerThreadList );
}
ExReleaseFastLock( &CcWorkQueueSpinlock, OldIrql );
if (WorkerThreadEntry != NULL) {
//
// I had to peak in the sources to verify that this routine
// is a noop if the Flink is not NULL. Sheeeeit!
//
((PWORK_QUEUE_ITEM)WorkerThreadEntry)->List.Flink = NULL;
ExQueueWorkItem( (PWORK_QUEUE_ITEM)WorkerThreadEntry, CriticalWorkQueue );
}
//
// And return to our caller
//
DebugTrace(-1, me, "CcPostWorkQueue -> VOID\n", 0 );
return;
}
//
// Internal support routine
//
VOID
CcWorkerThread (
PVOID ExWorkQueueItem
)
/*++
Routine Description:
This is worker thread routine for processing cache manager work queue
entries.
Arguments:
ExWorkQueueItem - The work item used for this thread
Return Value:
None
--*/
{
KIRQL OldIrql;
PWORK_QUEUE_ENTRY WorkQueueEntry;
BOOLEAN RescanOk = FALSE;
ASSERT(FIELD_OFFSET(WORK_QUEUE_ENTRY, WorkQueueLinks) == 0);
while (TRUE) {
ExAcquireFastLock( &CcWorkQueueSpinlock, &OldIrql );
//
// First see if there is something in the express queue.
//
if (!IsListEmpty(&CcExpressWorkQueue)) {
WorkQueueEntry = (PWORK_QUEUE_ENTRY)RemoveHeadList( &CcExpressWorkQueue );
//
// If there was nothing there, then try the regular queue.
//
} else if (!IsListEmpty(&CcRegularWorkQueue)) {
WorkQueueEntry = (PWORK_QUEUE_ENTRY)RemoveHeadList( &CcRegularWorkQueue );
//
// Else we can break and go idle.
//
} else {
break;
}
ExReleaseFastLock( &CcWorkQueueSpinlock, OldIrql );
//
// Process the entry within a try-except clause, so that any errors
// will cause us to continue after the called routine has unwound.
//
try {
switch (WorkQueueEntry->Function) {
//
// A read ahead or write behind request has been nooped (but
// left in the queue to keep the semaphore count right).
//
case Noop:
break;
//
// Perform read ahead
//
case ReadAhead:
DebugTrace( 0, me, "CcWorkerThread Read Ahead FileObject = %08lx\n",
WorkQueueEntry->Parameters.Read.FileObject );
CcPerformReadAhead( WorkQueueEntry->Parameters.Read.FileObject );
break;
//
// Perform write behind
//
case WriteBehind:
DebugTrace( 0, me, "CcWorkerThread WriteBehind SharedCacheMap = %08lx\n",
WorkQueueEntry->Parameters.Write.SharedCacheMap );
RescanOk = (BOOLEAN)NT_SUCCESS(CcWriteBehind( WorkQueueEntry->Parameters.Write.SharedCacheMap ));
break;
//
// Perform Lazy Write Scan
//
case LazyWriteScan:
DebugTrace( 0, me, "CcWorkerThread Lazy Write Scan\n", 0 );
CcLazyWriteScan();
break;
}
}
except( CcExceptionFilter( GetExceptionCode() )) {
NOTHING;
}
CcFreeWorkQueueEntry( WorkQueueEntry );
}
//
// No more work. Requeue our worker thread entry and get out.
//
InsertTailList( &CcIdleWorkerThreadList,
&((PWORK_QUEUE_ITEM)ExWorkQueueItem)->List );
ExReleaseFastLock( &CcWorkQueueSpinlock, OldIrql );
if (!IsListEmpty(&CcDeferredWrites) && (CcTotalDirtyPages >= 20) && RescanOk) {
CcLazyWriteScan();
}
return;
}
|