// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <iterator>
#include <mutex>
#include <vector>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/string_util.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_manager.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hle/kernel/address_arbiter.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/client_session.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/mutex.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/readable_event.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/shared_memory.h"
#include "core/hle/kernel/svc.h"
#include "core/hle/kernel/svc_wrap.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/transfer_memory.h"
#include "core/hle/kernel/writable_event.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/hle/service/service.h"
#include "core/memory.h"
#include "core/reporter.h"
namespace Kernel {
namespace {
// Checks if address + size is greater than the given address
// This can return false if the size causes an overflow of a 64-bit type
// or if the given size is zero.
constexpr bool IsValidAddressRange(VAddr address, u64 size) {
return address + size > address;
}
// 8 GiB
constexpr u64 MAIN_MEMORY_SIZE = 0x200000000;
// Helper function that performs the common sanity checks for svcMapMemory
// and svcUnmapMemory. This is doable, as both functions perform their sanitizing
// in the same order.
ResultCode MapUnmapMemorySanityChecks(const VMManager& vm_manager, VAddr dst_addr, VAddr src_addr,
u64 size) {
if (!Common::Is4KBAligned(dst_addr)) {
LOG_ERROR(Kernel_SVC, "Destination address is not aligned to 4KB, 0x{:016X}", dst_addr);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(src_addr)) {
LOG_ERROR(Kernel_SVC, "Source address is not aligned to 4KB, 0x{:016X}", src_addr);
return ERR_INVALID_SIZE;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is 0");
return ERR_INVALID_SIZE;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
dst_addr, size);
return ERR_INVALID_ADDRESS_STATE;
}
if (!IsValidAddressRange(src_addr, size)) {
LOG_ERROR(Kernel_SVC, "Source is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
src_addr, size);
return ERR_INVALID_ADDRESS_STATE;
}
if (!vm_manager.IsWithinAddressSpace(src_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Source is not within the address space, addr=0x{:016X}, size=0x{:016X}",
src_addr, size);
return ERR_INVALID_ADDRESS_STATE;
}
if (!vm_manager.IsWithinStackRegion(dst_addr, size)) {
LOG_ERROR(Kernel_SVC,
"Destination is not within the stack region, addr=0x{:016X}, size=0x{:016X}",
dst_addr, size);
return ERR_INVALID_MEMORY_RANGE;
}
const VAddr dst_end_address = dst_addr + size;
if (dst_end_address > vm_manager.GetHeapRegionBaseAddress() &&
vm_manager.GetHeapRegionEndAddress() > dst_addr) {
LOG_ERROR(Kernel_SVC,
"Destination does not fit within the heap region, addr=0x{:016X}, "
"size=0x{:016X}, end_addr=0x{:016X}",
dst_addr, size, dst_end_address);
return ERR_INVALID_MEMORY_RANGE;
}
if (dst_end_address > vm_manager.GetMapRegionBaseAddress() &&
vm_manager.GetMapRegionEndAddress() > dst_addr) {
LOG_ERROR(Kernel_SVC,
"Destination does not fit within the map region, addr=0x{:016X}, "
"size=0x{:016X}, end_addr=0x{:016X}",
dst_addr, size, dst_end_address);
return ERR_INVALID_MEMORY_RANGE;
}
return RESULT_SUCCESS;
}
enum class ResourceLimitValueType {
CurrentValue,
LimitValue,
};
ResultVal<s64> RetrieveResourceLimitValue(Core::System& system, Handle resource_limit,
u32 resource_type, ResourceLimitValueType value_type) {
const auto type = static_cast<ResourceType>(resource_type);
if (!IsValidResourceType(type)) {
LOG_ERROR(Kernel_SVC, "Invalid resource limit type: '{}'", resource_type);
return ERR_INVALID_ENUM_VALUE;
}
const auto* const current_process = system.Kernel().CurrentProcess();
ASSERT(current_process != nullptr);
const auto resource_limit_object =
current_process->GetHandleTable().Get<ResourceLimit>(resource_limit);
if (!resource_limit_object) {
LOG_ERROR(Kernel_SVC, "Handle to non-existent resource limit instance used. Handle={:08X}",
resource_limit);
return ERR_INVALID_HANDLE;
}
if (value_type == ResourceLimitValueType::CurrentValue) {
return MakeResult(resource_limit_object->GetCurrentResourceValue(type));
}
return MakeResult(resource_limit_object->GetMaxResourceValue(type));
}
} // Anonymous namespace
/// Set the process heap to a given Size. It can both extend and shrink the heap.
static ResultCode SetHeapSize(Core::System& system, VAddr* heap_addr, u64 heap_size) {
LOG_TRACE(Kernel_SVC, "called, heap_size=0x{:X}", heap_size);
// Size must be a multiple of 0x200000 (2MB) and be equal to or less than 8GB.
if ((heap_size % 0x200000) != 0) {
LOG_ERROR(Kernel_SVC, "The heap size is not a multiple of 2MB, heap_size=0x{:016X}",
heap_size);
return ERR_INVALID_SIZE;
}
if (heap_size >= 0x200000000) {
LOG_ERROR(Kernel_SVC, "The heap size is not less than 8GB, heap_size=0x{:016X}", heap_size);
return ERR_INVALID_SIZE;
}
auto& vm_manager = system.Kernel().CurrentProcess()->VMManager();
const auto alloc_result = vm_manager.SetHeapSize(heap_size);
if (alloc_result.Failed()) {
return alloc_result.Code();
}
*heap_addr = *alloc_result;
return RESULT_SUCCESS;
}
static ResultCode SetMemoryPermission(Core::System& system, VAddr addr, u64 size, u32 prot) {
LOG_TRACE(Kernel_SVC, "called, addr=0x{:X}, size=0x{:X}, prot=0x{:X}", addr, size, prot);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is 0");
return ERR_INVALID_SIZE;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(addr, size)) {
LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
addr, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto permission = static_cast<MemoryPermission>(prot);
if (permission != MemoryPermission::None && permission != MemoryPermission::Read &&
permission != MemoryPermission::ReadWrite) {
LOG_ERROR(Kernel_SVC, "Invalid memory permission specified, Got memory permission=0x{:08X}",
static_cast<u32>(permission));
return ERR_INVALID_MEMORY_PERMISSIONS;
}
auto* const current_process = system.Kernel().CurrentProcess();
auto& vm_manager = current_process->VMManager();
if (!vm_manager.IsWithinAddressSpace(addr, size)) {
LOG_ERROR(Kernel_SVC,
"Source is not within the address space, addr=0x{:016X}, size=0x{:016X}", addr,
size);
return ERR_INVALID_ADDRESS_STATE;
}
const VMManager::VMAHandle iter = vm_manager.FindVMA(addr);
if (!vm_manager.IsValidHandle(iter)) {
LOG_ERROR(Kernel_SVC, "Unable to find VMA for address=0x{:016X}", addr);
return ERR_INVALID_ADDRESS_STATE;
}
LOG_WARNING(Kernel_SVC, "Uniformity check on protected memory is not implemented.");
// TODO: Performs a uniformity check to make sure only protected memory is changed (it doesn't
// make sense to allow changing permissions on kernel memory itself, etc).
const auto converted_permissions = SharedMemory::ConvertPermissions(permission);
return vm_manager.ReprotectRange(addr, size, converted_permissions);
}
static ResultCode SetMemoryAttribute(Core::System& system, VAddr address, u64 size, u32 mask,
u32 attribute) {
LOG_DEBUG(Kernel_SVC,
"called, address=0x{:016X}, size=0x{:X}, mask=0x{:08X}, attribute=0x{:08X}", address,
size, mask, attribute);
if (!Common::Is4KBAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address not page aligned (0x{:016X})", address);
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Invalid size (0x{:X}). Size must be non-zero and page aligned.",
size);
return ERR_INVALID_ADDRESS;
}
if (!IsValidAddressRange(address, size)) {
LOG_ERROR(Kernel_SVC, "Address range overflowed (Address: 0x{:016X}, Size: 0x{:016X})",
address, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto mem_attribute = static_cast<MemoryAttribute>(attribute);
const auto mem_mask = static_cast<MemoryAttribute>(mask);
const auto attribute_with_mask = mem_attribute | mem_mask;
if (attribute_with_mask != mem_mask) {
LOG_ERROR(Kernel_SVC,
"Memory attribute doesn't match the given mask (Attribute: 0x{:X}, Mask: {:X}",
attribute, mask);
return ERR_INVALID_COMBINATION;
}
if ((attribute_with_mask | MemoryAttribute::Uncached) != MemoryAttribute::Uncached) {
LOG_ERROR(Kernel_SVC, "Specified attribute isn't equal to MemoryAttributeUncached (8).");
return ERR_INVALID_COMBINATION;
}
auto& vm_manager = system.Kernel().CurrentProcess()->VMManager();
if (!vm_manager.IsWithinAddressSpace(address, size)) {
LOG_ERROR(Kernel_SVC,
"Given address (0x{:016X}) is outside the bounds of the address space.", address);
return ERR_INVALID_ADDRESS_STATE;
}
return vm_manager.SetMemoryAttribute(address, size, mem_mask, mem_attribute);
}
/// Maps a memory range into a different range.
static ResultCode MapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
auto& vm_manager = system.Kernel().CurrentProcess()->VMManager();
const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);
if (result.IsError()) {
return result;
}
return vm_manager.MirrorMemory(dst_addr, src_addr, size, MemoryState::Stack);
}
/// Unmaps a region that was previously mapped with svcMapMemory
static ResultCode UnmapMemory(Core::System& system, VAddr dst_addr, VAddr src_addr, u64 size) {
LOG_TRACE(Kernel_SVC, "called, dst_addr=0x{:X}, src_addr=0x{:X}, size=0x{:X}", dst_addr,
src_addr, size);
auto& vm_manager = system.Kernel().CurrentProcess()->VMManager();
const auto result = MapUnmapMemorySanityChecks(vm_manager, dst_addr, src_addr, size);
if (result.IsError()) {
return result;
}
const auto unmap_res = vm_manager.UnmapRange(dst_addr, size);
// Reprotect the source mapping on success
if (unmap_res.IsSuccess()) {
ASSERT(vm_manager.ReprotectRange(src_addr, size, VMAPermission::ReadWrite).IsSuccess());
}
return unmap_res;
}
/// Connect to an OS service given the port name, returns the handle to the port to out
static ResultCode ConnectToNamedPort(Core::System& system, Handle* out_handle,
VAddr port_name_address) {
auto& memory = system.Memory();
if (!memory.IsValidVirtualAddress(port_name_address)) {
LOG_ERROR(Kernel_SVC,
"Port Name Address is not a valid virtual address, port_name_address=0x{:016X}",
port_name_address);
return ERR_NOT_FOUND;
}
static constexpr std::size_t PortNameMaxLength = 11;
// Read 1 char beyond the max allowed port name to detect names that are too long.
const std::string port_name = memory.ReadCString(port_name_address, PortNameMaxLength + 1);
if (port_name.size() > PortNameMaxLength) {
LOG_ERROR(Kernel_SVC, "Port name is too long, expected {} but got {}", PortNameMaxLength,
port_name.size());
return ERR_OUT_OF_RANGE;
}
LOG_TRACE(Kernel_SVC, "called port_name={}", port_name);
auto& kernel = system.Kernel();
const auto it = kernel.FindNamedPort(port_name);
if (!kernel.IsValidNamedPort(it)) {
LOG_WARNING(Kernel_SVC, "tried to connect to unknown port: {}", port_name);
return ERR_NOT_FOUND;
}
auto client_port = it->second;
std::shared_ptr<ClientSession> client_session;
CASCADE_RESULT(client_session, client_port->Connect());
// Return the client session
auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
CASCADE_RESULT(*out_handle, handle_table.Create(client_session));
return RESULT_SUCCESS;
}
/// Makes a blocking IPC call to an OS service.
static ResultCode SendSyncRequest(Core::System& system, Handle handle) {
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
std::shared_ptr<ClientSession> session = handle_table.Get<ClientSession>(handle);
if (!session) {
LOG_ERROR(Kernel_SVC, "called with invalid handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
LOG_TRACE(Kernel_SVC, "called handle=0x{:08X}({})", handle, session->GetName());
auto thread = system.CurrentScheduler().GetCurrentThread();
thread->InvalidateWakeupCallback();
thread->SetStatus(ThreadStatus::WaitIPC);
system.PrepareReschedule(thread->GetProcessorID());
return session->SendSyncRequest(SharedFrom(thread), system.Memory());
}
/// Get the ID for the specified thread.
static ResultCode GetThreadId(Core::System& system, u64* thread_id, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", thread_handle);
return ERR_INVALID_HANDLE;
}
*thread_id = thread->GetThreadID();
return RESULT_SUCCESS;
}
/// Gets the ID of the specified process or a specified thread's owning process.
static ResultCode GetProcessId(Core::System& system, u64* process_id, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called handle=0x{:08X}", handle);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const std::shared_ptr<Process> process = handle_table.Get<Process>(handle);
if (process) {
*process_id = process->GetProcessID();
return RESULT_SUCCESS;
}
const std::shared_ptr<Thread> thread = handle_table.Get<Thread>(handle);
if (thread) {
const Process* const owner_process = thread->GetOwnerProcess();
if (!owner_process) {
LOG_ERROR(Kernel_SVC, "Non-existent owning process encountered.");
return ERR_INVALID_HANDLE;
}
*process_id = owner_process->GetProcessID();
return RESULT_SUCCESS;
}
// NOTE: This should also handle debug objects before returning.
LOG_ERROR(Kernel_SVC, "Handle does not exist, handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
/// Default thread wakeup callback for WaitSynchronization
static bool DefaultThreadWakeupCallback(ThreadWakeupReason reason, std::shared_ptr<Thread> thread,
std::shared_ptr<SynchronizationObject> object,
std::size_t index) {
ASSERT(thread->GetStatus() == ThreadStatus::WaitSynch);
if (reason == ThreadWakeupReason::Timeout) {
thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
return true;
}
ASSERT(reason == ThreadWakeupReason::Signal);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
thread->SetWaitSynchronizationOutput(static_cast<u32>(index));
return true;
};
/// Wait for the given handles to synchronize, timeout after the specified nanoseconds
static ResultCode WaitSynchronization(Core::System& system, Handle* index, VAddr handles_address,
u64 handle_count, s64 nano_seconds) {
LOG_TRACE(Kernel_SVC, "called handles_address=0x{:X}, handle_count={}, nano_seconds={}",
handles_address, handle_count, nano_seconds);
auto& memory = system.Memory();
if (!memory.IsValidVirtualAddress(handles_address)) {
LOG_ERROR(Kernel_SVC,
"Handle address is not a valid virtual address, handle_address=0x{:016X}",
handles_address);
return ERR_INVALID_POINTER;
}
static constexpr u64 MaxHandles = 0x40;
if (handle_count > MaxHandles) {
LOG_ERROR(Kernel_SVC, "Handle count specified is too large, expected {} but got {}",
MaxHandles, handle_count);
return ERR_OUT_OF_RANGE;
}
auto* const thread = system.CurrentScheduler().GetCurrentThread();
using ObjectPtr = Thread::ThreadSynchronizationObjects::value_type;
Thread::ThreadSynchronizationObjects objects(handle_count);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
for (u64 i = 0; i < handle_count; ++i) {
const Handle handle = memory.Read32(handles_address + i * sizeof(Handle));
const auto object = handle_table.Get<SynchronizationObject>(handle);
if (object == nullptr) {
LOG_ERROR(Kernel_SVC, "Object is a nullptr");
return ERR_INVALID_HANDLE;
}
objects[i] = object;
}
// Find the first object that is acquirable in the provided list of objects
auto itr = std::find_if(objects.begin(), objects.end(), [thread](const ObjectPtr& object) {
return !object->ShouldWait(thread);
});
if (itr != objects.end()) {
// We found a ready object, acquire it and set the result value
SynchronizationObject* object = itr->get();
object->Acquire(thread);
*index = static_cast<s32>(std::distance(objects.begin(), itr));
return RESULT_SUCCESS;
}
// No objects were ready to be acquired, prepare to suspend the thread.
// If a timeout value of 0 was provided, just return the Timeout error code instead of
// suspending the thread.
if (nano_seconds == 0) {
return RESULT_TIMEOUT;
}
if (thread->IsSyncCancelled()) {
thread->SetSyncCancelled(false);
return ERR_SYNCHRONIZATION_CANCELED;
}
for (auto& object : objects) {
object->AddWaitingThread(SharedFrom(thread));
}
thread->SetSynchronizationObjects(std::move(objects));
thread->SetStatus(ThreadStatus::WaitSynch);
// Create an event to wake the thread up after the specified nanosecond delay has passed
thread->WakeAfterDelay(nano_seconds);
thread->SetWakeupCallback(DefaultThreadWakeupCallback);
system.PrepareReschedule(thread->GetProcessorID());
return RESULT_TIMEOUT;
}
/// Resumes a thread waiting on WaitSynchronization
static ResultCode CancelSynchronization(Core::System& system, Handle thread_handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x{:X}", thread_handle);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
thread_handle);
return ERR_INVALID_HANDLE;
}
thread->CancelWait();
system.PrepareReschedule(thread->GetProcessorID());
return RESULT_SUCCESS;
}
/// Attempts to locks a mutex, creating it if it does not already exist
static ResultCode ArbitrateLock(Core::System& system, Handle holding_thread_handle,
VAddr mutex_addr, Handle requesting_thread_handle) {
LOG_TRACE(Kernel_SVC,
"called holding_thread_handle=0x{:08X}, mutex_addr=0x{:X}, "
"requesting_current_thread_handle=0x{:08X}",
holding_thread_handle, mutex_addr, requesting_thread_handle);
if (Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
return ERR_INVALID_ADDRESS;
}
auto* const current_process = system.Kernel().CurrentProcess();
return current_process->GetMutex().TryAcquire(mutex_addr, holding_thread_handle,
requesting_thread_handle);
}
/// Unlock a mutex
static ResultCode ArbitrateUnlock(Core::System& system, VAddr mutex_addr) {
LOG_TRACE(Kernel_SVC, "called mutex_addr=0x{:X}", mutex_addr);
if (Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is a kernel virtual address, mutex_addr={:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Mutex Address is not word aligned, mutex_addr={:016X}", mutex_addr);
return ERR_INVALID_ADDRESS;
}
auto* const current_process = system.Kernel().CurrentProcess();
return current_process->GetMutex().Release(mutex_addr);
}
enum class BreakType : u32 {
Panic = 0,
AssertionFailed = 1,
PreNROLoad = 3,
PostNROLoad = 4,
PreNROUnload = 5,
PostNROUnload = 6,
CppException = 7,
};
struct BreakReason {
union {
u32 raw;
BitField<0, 30, BreakType> break_type;
BitField<31, 1, u32> signal_debugger;
};
};
/// Break program execution
static void Break(Core::System& system, u32 reason, u64 info1, u64 info2) {
BreakReason break_reason{reason};
bool has_dumped_buffer{};
std::vector<u8> debug_buffer;
const auto handle_debug_buffer = [&](VAddr addr, u64 sz) {
if (sz == 0 || addr == 0 || has_dumped_buffer) {
return;
}
auto& memory = system.Memory();
// This typically is an error code so we're going to assume this is the case
if (sz == sizeof(u32)) {
LOG_CRITICAL(Debug_Emulated, "debug_buffer_err_code={:X}", memory.Read32(addr));
} else {
// We don't know what's in here so we'll hexdump it
debug_buffer.resize(sz);
memory.ReadBlock(addr, debug_buffer.data(), sz);
std::string hexdump;
for (std::size_t i = 0; i < debug_buffer.size(); i++) {
hexdump += fmt::format("{:02X} ", debug_buffer[i]);
if (i != 0 && i % 16 == 0) {
hexdump += '\n';
}
}
LOG_CRITICAL(Debug_Emulated, "debug_buffer=\n{}", hexdump);
}
has_dumped_buffer = true;
};
switch (break_reason.break_type) {
case BreakType::Panic:
LOG_CRITICAL(Debug_Emulated, "Signalling debugger, PANIC! info1=0x{:016X}, info2=0x{:016X}",
info1, info2);
handle_debug_buffer(info1, info2);
break;
case BreakType::AssertionFailed:
LOG_CRITICAL(Debug_Emulated,
"Signalling debugger, Assertion failed! info1=0x{:016X}, info2=0x{:016X}",
info1, info2);
handle_debug_buffer(info1, info2);
break;
case BreakType::PreNROLoad:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Attempting to load an NRO at 0x{:016X} with size 0x{:016X}",
info1, info2);
break;
case BreakType::PostNROLoad:
LOG_WARNING(Debug_Emulated,
"Signalling debugger, Loaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
info2);
break;
case BreakType::PreNROUnload:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Attempting to unload an NRO at 0x{:016X} with size 0x{:016X}",
info1, info2);
break;
case BreakType::PostNROUnload:
LOG_WARNING(Debug_Emulated,
"Signalling debugger, Unloaded an NRO at 0x{:016X} with size 0x{:016X}", info1,
info2);
break;
case BreakType::CppException:
LOG_CRITICAL(Debug_Emulated, "Signalling debugger. Uncaught C++ exception encountered.");
break;
default:
LOG_WARNING(
Debug_Emulated,
"Signalling debugger, Unknown break reason {}, info1=0x{:016X}, info2=0x{:016X}",
static_cast<u32>(break_reason.break_type.Value()), info1, info2);
handle_debug_buffer(info1, info2);
break;
}
system.GetReporter().SaveSvcBreakReport(
static_cast<u32>(break_reason.break_type.Value()), break_reason.signal_debugger, info1,
info2, has_dumped_buffer ? std::make_optional(debug_buffer) : std::nullopt);
if (!break_reason.signal_debugger) {
LOG_CRITICAL(
Debug_Emulated,
"Emulated program broke execution! reason=0x{:016X}, info1=0x{:016X}, info2=0x{:016X}",
reason, info1, info2);
handle_debug_buffer(info1, info2);
auto* const current_thread = system.CurrentScheduler().GetCurrentThread();
const auto thread_processor_id = current_thread->GetProcessorID();
system.ArmInterface(static_cast<std::size_t>(thread_processor_id)).LogBacktrace();
ASSERT(false);
system.Kernel().CurrentProcess()->PrepareForTermination();
// Kill the current thread
current_thread->Stop();
system.PrepareReschedule();
}
}
/// Used to output a message on a debug hardware unit - does nothing on a retail unit
static void OutputDebugString([[maybe_unused]] Core::System& system, VAddr address, u64 len) {
if (len == 0) {
return;
}
std::string str(len, '\0');
system.Memory().ReadBlock(address, str.data(), str.size());
LOG_DEBUG(Debug_Emulated, "{}", str);
}
/// Gets system/memory information for the current process
static ResultCode GetInfo(Core::System& system, u64* result, u64 info_id, u64 handle,
u64 info_sub_id) {
LOG_TRACE(Kernel_SVC, "called info_id=0x{:X}, info_sub_id=0x{:X}, handle=0x{:08X}", info_id,
info_sub_id, handle);
enum class GetInfoType : u64 {
// 1.0.0+
AllowedCPUCoreMask = 0,
AllowedThreadPriorityMask = 1,
MapRegionBaseAddr = 2,
MapRegionSize = 3,
HeapRegionBaseAddr = 4,
HeapRegionSize = 5,
TotalPhysicalMemoryAvailable = 6,
TotalPhysicalMemoryUsed = 7,
IsCurrentProcessBeingDebugged = 8,
RegisterResourceLimit = 9,
IdleTickCount = 10,
RandomEntropy = 11,
ThreadTickCount = 0xF0000002,
// 2.0.0+
ASLRRegionBaseAddr = 12,
ASLRRegionSize = 13,
StackRegionBaseAddr = 14,
StackRegionSize = 15,
// 3.0.0+
SystemResourceSize = 16,
SystemResourceUsage = 17,
TitleId = 18,
// 4.0.0+
PrivilegedProcessId = 19,
// 5.0.0+
UserExceptionContextAddr = 20,
// 6.0.0+
TotalPhysicalMemoryAvailableWithoutSystemResource = 21,
TotalPhysicalMemoryUsedWithoutSystemResource = 22,
};
const auto info_id_type = static_cast<GetInfoType>(info_id);
switch (info_id_type) {
case GetInfoType::AllowedCPUCoreMask:
case GetInfoType::AllowedThreadPriorityMask:
case GetInfoType::MapRegionBaseAddr:
case GetInfoType::MapRegionSize:
case GetInfoType::HeapRegionBaseAddr:
case GetInfoType::HeapRegionSize:
case GetInfoType::ASLRRegionBaseAddr:
case GetInfoType::ASLRRegionSize:
case GetInfoType::StackRegionBaseAddr:
case GetInfoType::StackRegionSize:
case GetInfoType::TotalPhysicalMemoryAvailable:
case GetInfoType::TotalPhysicalMemoryUsed:
case GetInfoType::SystemResourceSize:
case GetInfoType::SystemResourceUsage:
case GetInfoType::TitleId:
case GetInfoType::UserExceptionContextAddr:
case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource:
case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource: {
if (info_sub_id != 0) {
return ERR_INVALID_ENUM_VALUE;
}
const auto& current_process_handle_table =
system.Kernel().CurrentProcess()->GetHandleTable();
const auto process = current_process_handle_table.Get<Process>(static_cast<Handle>(handle));
if (!process) {
return ERR_INVALID_HANDLE;
}
switch (info_id_type) {
case GetInfoType::AllowedCPUCoreMask:
*result = process->GetCoreMask();
return RESULT_SUCCESS;
case GetInfoType::AllowedThreadPriorityMask:
*result = process->GetPriorityMask();
return RESULT_SUCCESS;
case GetInfoType::MapRegionBaseAddr:
*result = process->VMManager().GetMapRegionBaseAddress();
return RESULT_SUCCESS;
case GetInfoType::MapRegionSize:
*result = process->VMManager().GetMapRegionSize();
return RESULT_SUCCESS;
case GetInfoType::HeapRegionBaseAddr:
*result = process->VMManager().GetHeapRegionBaseAddress();
return RESULT_SUCCESS;
case GetInfoType::HeapRegionSize:
*result = process->VMManager().GetHeapRegionSize();
return RESULT_SUCCESS;
case GetInfoType::ASLRRegionBaseAddr:
*result = process->VMManager().GetASLRRegionBaseAddress();
return RESULT_SUCCESS;
case GetInfoType::ASLRRegionSize:
*result = process->VMManager().GetASLRRegionSize();
return RESULT_SUCCESS;
case GetInfoType::StackRegionBaseAddr:
*result = process->VMManager().GetStackRegionBaseAddress();
return RESULT_SUCCESS;
case GetInfoType::StackRegionSize:
*result = process->VMManager().GetStackRegionSize();
return RESULT_SUCCESS;
case GetInfoType::TotalPhysicalMemoryAvailable:
*result = process->GetTotalPhysicalMemoryAvailable();
return RESULT_SUCCESS;
case GetInfoType::TotalPhysicalMemoryUsed:
*result = process->GetTotalPhysicalMemoryUsed();
return RESULT_SUCCESS;
case GetInfoType::SystemResourceSize:
*result = process->GetSystemResourceSize();
return RESULT_SUCCESS;
case GetInfoType::SystemResourceUsage:
LOG_WARNING(Kernel_SVC, "(STUBBED) Attempted to query system resource usage");
*result = process->GetSystemResourceUsage();
return RESULT_SUCCESS;
case GetInfoType::TitleId:
*result = process->GetTitleID();
return RESULT_SUCCESS;
case GetInfoType::UserExceptionContextAddr:
*result = process->GetTLSRegionAddress();
return RESULT_SUCCESS;
case GetInfoType::TotalPhysicalMemoryAvailableWithoutSystemResource:
*result = process->GetTotalPhysicalMemoryAvailableWithoutSystemResource();
return RESULT_SUCCESS;
case GetInfoType::TotalPhysicalMemoryUsedWithoutSystemResource:
*result = process->GetTotalPhysicalMemoryUsedWithoutSystemResource();
return RESULT_SUCCESS;
default:
break;
}
LOG_WARNING(Kernel_SVC, "(STUBBED) Unimplemented svcGetInfo id=0x{:016X}", info_id);
return ERR_INVALID_ENUM_VALUE;
}
case GetInfoType::IsCurrentProcessBeingDebugged:
*result = 0;
return RESULT_SUCCESS;
case GetInfoType::RegisterResourceLimit: {
if (handle != 0) {
return ERR_INVALID_HANDLE;
}
if (info_sub_id != 0) {
return ERR_INVALID_COMBINATION;
}
Process* const current_process = system.Kernel().CurrentProcess();
HandleTable& handle_table = current_process->GetHandleTable();
const auto resource_limit = current_process->GetResourceLimit();
if (!resource_limit) {
*result = KernelHandle::InvalidHandle;
// Yes, the kernel considers this a successful operation.
return RESULT_SUCCESS;
}
const auto table_result = handle_table.Create(resource_limit);
if (table_result.Failed()) {
return table_result.Code();
}
*result = *table_result;
return RESULT_SUCCESS;
}
case GetInfoType::RandomEntropy:
if (handle != 0) {
LOG_ERROR(Kernel_SVC, "Process Handle is non zero, expected 0 result but got {:016X}",
handle);
return ERR_INVALID_HANDLE;
}
if (info_sub_id >= Process::RANDOM_ENTROPY_SIZE) {
LOG_ERROR(Kernel_SVC, "Entropy size is out of range, expected {} but got {}",
Process::RANDOM_ENTROPY_SIZE, info_sub_id);
return ERR_INVALID_COMBINATION;
}
*result = system.Kernel().CurrentProcess()->GetRandomEntropy(info_sub_id);
return RESULT_SUCCESS;
case GetInfoType::PrivilegedProcessId:
LOG_WARNING(Kernel_SVC,
"(STUBBED) Attempted to query privileged process id bounds, returned 0");
*result = 0;
return RESULT_SUCCESS;
case GetInfoType::ThreadTickCount: {
constexpr u64 num_cpus = 4;
if (info_sub_id != 0xFFFFFFFFFFFFFFFF && info_sub_id >= num_cpus) {
LOG_ERROR(Kernel_SVC, "Core count is out of range, expected {} but got {}", num_cpus,
info_sub_id);
return ERR_INVALID_COMBINATION;
}
const auto thread = system.Kernel().CurrentProcess()->GetHandleTable().Get<Thread>(
static_cast<Handle>(handle));
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}",
static_cast<Handle>(handle));
return ERR_INVALID_HANDLE;
}
const auto& core_timing = system.CoreTiming();
const auto& scheduler = system.CurrentScheduler();
const auto* const current_thread = scheduler.GetCurrentThread();
const bool same_thread = current_thread == thread.get();
const u64 prev_ctx_ticks = scheduler.GetLastContextSwitchTicks();
u64 out_ticks = 0;
if (same_thread && info_sub_id == 0xFFFFFFFFFFFFFFFF) {
const u64 thread_ticks = current_thread->GetTotalCPUTimeTicks();
out_ticks = thread_ticks + (core_timing.GetTicks() - prev_ctx_ticks);
} else if (same_thread && info_sub_id == system.CurrentCoreIndex()) {
out_ticks = core_timing.GetTicks() - prev_ctx_ticks;
}
*result = out_ticks;
return RESULT_SUCCESS;
}
default:
LOG_WARNING(Kernel_SVC, "(STUBBED) Unimplemented svcGetInfo id=0x{:016X}", info_id);
return ERR_INVALID_ENUM_VALUE;
}
}
/// Maps memory at a desired address
static ResultCode MapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ERR_INVALID_SIZE;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ERR_INVALID_SIZE;
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ERR_INVALID_MEMORY_RANGE;
}
Process* const current_process = system.Kernel().CurrentProcess();
auto& vm_manager = current_process->VMManager();
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ERR_INVALID_STATE;
}
if (!vm_manager.IsWithinMapRegion(addr, size)) {
LOG_ERROR(Kernel_SVC, "Range not within map region");
return ERR_INVALID_MEMORY_RANGE;
}
return vm_manager.MapPhysicalMemory(addr, size);
}
/// Unmaps memory previously mapped via MapPhysicalMemory
static ResultCode UnmapPhysicalMemory(Core::System& system, VAddr addr, u64 size) {
LOG_DEBUG(Kernel_SVC, "called, addr=0x{:016X}, size=0x{:X}", addr, size);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, 0x{:016X}", addr);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:X}", size);
return ERR_INVALID_SIZE;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is zero");
return ERR_INVALID_SIZE;
}
if (!(addr < addr + size)) {
LOG_ERROR(Kernel_SVC, "Size causes 64-bit overflow of address");
return ERR_INVALID_MEMORY_RANGE;
}
Process* const current_process = system.Kernel().CurrentProcess();
auto& vm_manager = current_process->VMManager();
if (current_process->GetSystemResourceSize() == 0) {
LOG_ERROR(Kernel_SVC, "System Resource Size is zero");
return ERR_INVALID_STATE;
}
if (!vm_manager.IsWithinMapRegion(addr, size)) {
LOG_ERROR(Kernel_SVC, "Range not within map region");
return ERR_INVALID_MEMORY_RANGE;
}
return vm_manager.UnmapPhysicalMemory(addr, size);
}
/// Sets the thread activity
static ResultCode SetThreadActivity(Core::System& system, Handle handle, u32 activity) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, activity=0x{:08X}", handle, activity);
if (activity > static_cast<u32>(ThreadActivity::Paused)) {
return ERR_INVALID_ENUM_VALUE;
}
const auto* current_process = system.Kernel().CurrentProcess();
const std::shared_ptr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
if (thread->GetOwnerProcess() != current_process) {
LOG_ERROR(Kernel_SVC,
"The current process does not own the current thread, thread_handle={:08X} "
"thread_pid={}, "
"current_process_pid={}",
handle, thread->GetOwnerProcess()->GetProcessID(),
current_process->GetProcessID());
return ERR_INVALID_HANDLE;
}
if (thread.get() == system.CurrentScheduler().GetCurrentThread()) {
LOG_ERROR(Kernel_SVC, "The thread handle specified is the current running thread");
return ERR_BUSY;
}
thread->SetActivity(static_cast<ThreadActivity>(activity));
system.PrepareReschedule(thread->GetProcessorID());
return RESULT_SUCCESS;
}
/// Gets the thread context
static ResultCode GetThreadContext(Core::System& system, VAddr thread_context, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called, context=0x{:08X}, thread=0x{:X}", thread_context, handle);
const auto* current_process = system.Kernel().CurrentProcess();
const std::shared_ptr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
if (thread->GetOwnerProcess() != current_process) {
LOG_ERROR(Kernel_SVC,
"The current process does not own the current thread, thread_handle={:08X} "
"thread_pid={}, "
"current_process_pid={}",
handle, thread->GetOwnerProcess()->GetProcessID(),
current_process->GetProcessID());
return ERR_INVALID_HANDLE;
}
if (thread.get() == system.CurrentScheduler().GetCurrentThread()) {
LOG_ERROR(Kernel_SVC, "The thread handle specified is the current running thread");
return ERR_BUSY;
}
Core::ARM_Interface::ThreadContext ctx = thread->GetContext();
// Mask away mode bits, interrupt bits, IL bit, and other reserved bits.
ctx.pstate &= 0xFF0FFE20;
// If 64-bit, we can just write the context registers directly and we're good.
// However, if 32-bit, we have to ensure some registers are zeroed out.
if (!current_process->Is64BitProcess()) {
std::fill(ctx.cpu_registers.begin() + 15, ctx.cpu_registers.end(), 0);
std::fill(ctx.vector_registers.begin() + 16, ctx.vector_registers.end(), u128{});
}
system.Memory().WriteBlock(thread_context, &ctx, sizeof(ctx));
return RESULT_SUCCESS;
}
/// Gets the priority for the specified thread
static ResultCode GetThreadPriority(Core::System& system, u32* priority, Handle handle) {
LOG_TRACE(Kernel_SVC, "called");
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const std::shared_ptr<Thread> thread = handle_table.Get<Thread>(handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
*priority = thread->GetPriority();
return RESULT_SUCCESS;
}
/// Sets the priority for the specified thread
static ResultCode SetThreadPriority(Core::System& system, Handle handle, u32 priority) {
LOG_TRACE(Kernel_SVC, "called");
if (priority > THREADPRIO_LOWEST) {
LOG_ERROR(
Kernel_SVC,
"An invalid priority was specified, expected {} but got {} for thread_handle={:08X}",
THREADPRIO_LOWEST, priority, handle);
return ERR_INVALID_THREAD_PRIORITY;
}
const auto* const current_process = system.Kernel().CurrentProcess();
std::shared_ptr<Thread> thread = current_process->GetHandleTable().Get<Thread>(handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
thread->SetPriority(priority);
system.PrepareReschedule(thread->GetProcessorID());
return RESULT_SUCCESS;
}
/// Get which CPU core is executing the current thread
static u32 GetCurrentProcessorNumber(Core::System& system) {
LOG_TRACE(Kernel_SVC, "called");
return system.CurrentScheduler().GetCurrentThread()->GetProcessorID();
}
static ResultCode MapSharedMemory(Core::System& system, Handle shared_memory_handle, VAddr addr,
u64 size, u32 permissions) {
LOG_TRACE(Kernel_SVC,
"called, shared_memory_handle=0x{:X}, addr=0x{:X}, size=0x{:X}, permissions=0x{:08X}",
shared_memory_handle, addr, size, permissions);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is 0");
return ERR_INVALID_SIZE;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(addr, size)) {
LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
addr, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto permissions_type = static_cast<MemoryPermission>(permissions);
if (permissions_type != MemoryPermission::Read &&
permissions_type != MemoryPermission::ReadWrite) {
LOG_ERROR(Kernel_SVC, "Expected Read or ReadWrite permission but got permissions=0x{:08X}",
permissions);
return ERR_INVALID_MEMORY_PERMISSIONS;
}
auto* const current_process = system.Kernel().CurrentProcess();
auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle);
if (!shared_memory) {
LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}",
shared_memory_handle);
return ERR_INVALID_HANDLE;
}
const auto& vm_manager = current_process->VMManager();
if (!vm_manager.IsWithinASLRRegion(addr, size)) {
LOG_ERROR(Kernel_SVC, "Region is not within the ASLR region. addr=0x{:016X}, size={:016X}",
addr, size);
return ERR_INVALID_MEMORY_RANGE;
}
return shared_memory->Map(*current_process, addr, permissions_type, MemoryPermission::DontCare);
}
static ResultCode UnmapSharedMemory(Core::System& system, Handle shared_memory_handle, VAddr addr,
u64 size) {
LOG_WARNING(Kernel_SVC, "called, shared_memory_handle=0x{:08X}, addr=0x{:X}, size=0x{:X}",
shared_memory_handle, addr, size);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address is not aligned to 4KB, addr=0x{:016X}", addr);
return ERR_INVALID_ADDRESS;
}
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is 0");
return ERR_INVALID_SIZE;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, size=0x{:016X}", size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(addr, size)) {
LOG_ERROR(Kernel_SVC, "Region is not a valid address range, addr=0x{:016X}, size=0x{:016X}",
addr, size);
return ERR_INVALID_ADDRESS_STATE;
}
auto* const current_process = system.Kernel().CurrentProcess();
auto shared_memory = current_process->GetHandleTable().Get<SharedMemory>(shared_memory_handle);
if (!shared_memory) {
LOG_ERROR(Kernel_SVC, "Shared memory does not exist, shared_memory_handle=0x{:08X}",
shared_memory_handle);
return ERR_INVALID_HANDLE;
}
const auto& vm_manager = current_process->VMManager();
if (!vm_manager.IsWithinASLRRegion(addr, size)) {
LOG_ERROR(Kernel_SVC, "Region is not within the ASLR region. addr=0x{:016X}, size={:016X}",
addr, size);
return ERR_INVALID_MEMORY_RANGE;
}
return shared_memory->Unmap(*current_process, addr, size);
}
static ResultCode QueryProcessMemory(Core::System& system, VAddr memory_info_address,
VAddr page_info_address, Handle process_handle,
VAddr address) {
LOG_TRACE(Kernel_SVC, "called process=0x{:08X} address={:X}", process_handle, address);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
std::shared_ptr<Process> process = handle_table.Get<Process>(process_handle);
if (!process) {
LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}",
process_handle);
return ERR_INVALID_HANDLE;
}
auto& memory = system.Memory();
const auto& vm_manager = process->VMManager();
const MemoryInfo memory_info = vm_manager.QueryMemory(address);
memory.Write64(memory_info_address, memory_info.base_address);
memory.Write64(memory_info_address + 8, memory_info.size);
memory.Write32(memory_info_address + 16, memory_info.state);
memory.Write32(memory_info_address + 20, memory_info.attributes);
memory.Write32(memory_info_address + 24, memory_info.permission);
memory.Write32(memory_info_address + 32, memory_info.ipc_ref_count);
memory.Write32(memory_info_address + 28, memory_info.device_ref_count);
memory.Write32(memory_info_address + 36, 0);
// Page info appears to be currently unused by the kernel and is always set to zero.
memory.Write32(page_info_address, 0);
return RESULT_SUCCESS;
}
static ResultCode QueryMemory(Core::System& system, VAddr memory_info_address,
VAddr page_info_address, VAddr query_address) {
LOG_TRACE(Kernel_SVC,
"called, memory_info_address=0x{:016X}, page_info_address=0x{:016X}, "
"query_address=0x{:016X}",
memory_info_address, page_info_address, query_address);
return QueryProcessMemory(system, memory_info_address, page_info_address, CurrentProcess,
query_address);
}
static ResultCode MapProcessCodeMemory(Core::System& system, Handle process_handle, u64 dst_address,
u64 src_address, u64 size) {
LOG_DEBUG(Kernel_SVC,
"called. process_handle=0x{:08X}, dst_address=0x{:016X}, "
"src_address=0x{:016X}, size=0x{:016X}",
process_handle, dst_address, src_address, size);
if (!Common::Is4KBAligned(src_address)) {
LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
src_address);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(dst_address)) {
LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
dst_address);
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X})", size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range overflows the address space (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ERR_INVALID_ADDRESS_STATE;
}
if (!IsValidAddressRange(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range overflows the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto process = handle_table.Get<Process>(process_handle);
if (!process) {
LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
process_handle);
return ERR_INVALID_HANDLE;
}
auto& vm_manager = process->VMManager();
if (!vm_manager.IsWithinAddressSpace(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range is not within the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ERR_INVALID_ADDRESS_STATE;
}
if (!vm_manager.IsWithinASLRRegion(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ERR_INVALID_MEMORY_RANGE;
}
return vm_manager.MapCodeMemory(dst_address, src_address, size);
}
static ResultCode UnmapProcessCodeMemory(Core::System& system, Handle process_handle,
u64 dst_address, u64 src_address, u64 size) {
LOG_DEBUG(Kernel_SVC,
"called. process_handle=0x{:08X}, dst_address=0x{:016X}, src_address=0x{:016X}, "
"size=0x{:016X}",
process_handle, dst_address, src_address, size);
if (!Common::Is4KBAligned(dst_address)) {
LOG_ERROR(Kernel_SVC, "dst_address is not page-aligned (dst_address=0x{:016X}).",
dst_address);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(src_address)) {
LOG_ERROR(Kernel_SVC, "src_address is not page-aligned (src_address=0x{:016X}).",
src_address);
return ERR_INVALID_ADDRESS;
}
if (size == 0 || Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is zero or not page-aligned (size=0x{:016X}).", size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range overflows the address space (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ERR_INVALID_ADDRESS_STATE;
}
if (!IsValidAddressRange(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range overflows the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto process = handle_table.Get<Process>(process_handle);
if (!process) {
LOG_ERROR(Kernel_SVC, "Invalid process handle specified (handle=0x{:08X}).",
process_handle);
return ERR_INVALID_HANDLE;
}
auto& vm_manager = process->VMManager();
if (!vm_manager.IsWithinAddressSpace(src_address, size)) {
LOG_ERROR(Kernel_SVC,
"Source address range is not within the address space (src_address=0x{:016X}, "
"size=0x{:016X}).",
src_address, size);
return ERR_INVALID_ADDRESS_STATE;
}
if (!vm_manager.IsWithinASLRRegion(dst_address, size)) {
LOG_ERROR(Kernel_SVC,
"Destination address range is not within the ASLR region (dst_address=0x{:016X}, "
"size=0x{:016X}).",
dst_address, size);
return ERR_INVALID_MEMORY_RANGE;
}
return vm_manager.UnmapCodeMemory(dst_address, src_address, size);
}
/// Exits the current process
static void ExitProcess(Core::System& system) {
auto* current_process = system.Kernel().CurrentProcess();
LOG_INFO(Kernel_SVC, "Process {} exiting", current_process->GetProcessID());
ASSERT_MSG(current_process->GetStatus() == ProcessStatus::Running,
"Process has already exited");
current_process->PrepareForTermination();
// Kill the current thread
system.CurrentScheduler().GetCurrentThread()->Stop();
system.PrepareReschedule();
}
/// Creates a new thread
static ResultCode CreateThread(Core::System& system, Handle* out_handle, VAddr entry_point, u64 arg,
VAddr stack_top, u32 priority, s32 processor_id) {
LOG_DEBUG(Kernel_SVC,
"called entrypoint=0x{:08X}, arg=0x{:08X}, stacktop=0x{:08X}, "
"threadpriority=0x{:08X}, processorid=0x{:08X} : created handle=0x{:08X}",
entry_point, arg, stack_top, priority, processor_id, *out_handle);
auto* const current_process = system.Kernel().CurrentProcess();
if (processor_id == THREADPROCESSORID_IDEAL) {
// Set the target CPU to the one specified by the process.
processor_id = current_process->GetIdealCore();
ASSERT(processor_id != THREADPROCESSORID_IDEAL);
}
if (processor_id < THREADPROCESSORID_0 || processor_id > THREADPROCESSORID_3) {
LOG_ERROR(Kernel_SVC, "Invalid thread processor ID: {}", processor_id);
return ERR_INVALID_PROCESSOR_ID;
}
const u64 core_mask = current_process->GetCoreMask();
if ((core_mask | (1ULL << processor_id)) != core_mask) {
LOG_ERROR(Kernel_SVC, "Invalid thread core specified ({})", processor_id);
return ERR_INVALID_PROCESSOR_ID;
}
if (priority > THREADPRIO_LOWEST) {
LOG_ERROR(Kernel_SVC,
"Invalid thread priority specified ({}). Must be within the range 0-64",
priority);
return ERR_INVALID_THREAD_PRIORITY;
}
if (((1ULL << priority) & current_process->GetPriorityMask()) == 0) {
LOG_ERROR(Kernel_SVC, "Invalid thread priority specified ({})", priority);
return ERR_INVALID_THREAD_PRIORITY;
}
auto& kernel = system.Kernel();
CASCADE_RESULT(std::shared_ptr<Thread> thread,
Thread::Create(kernel, "", entry_point, priority, arg, processor_id, stack_top,
*current_process));
const auto new_thread_handle = current_process->GetHandleTable().Create(thread);
if (new_thread_handle.Failed()) {
LOG_ERROR(Kernel_SVC, "Failed to create handle with error=0x{:X}",
new_thread_handle.Code().raw);
return new_thread_handle.Code();
}
*out_handle = *new_thread_handle;
// Set the thread name for debugging purposes.
thread->SetName(
fmt::format("thread[entry_point={:X}, handle={:X}]", entry_point, *new_thread_handle));
system.PrepareReschedule(thread->GetProcessorID());
return RESULT_SUCCESS;
}
/// Starts the thread for the provided handle
static ResultCode StartThread(Core::System& system, Handle thread_handle) {
LOG_DEBUG(Kernel_SVC, "called thread=0x{:08X}", thread_handle);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
thread_handle);
return ERR_INVALID_HANDLE;
}
ASSERT(thread->GetStatus() == ThreadStatus::Dormant);
thread->ResumeFromWait();
if (thread->GetStatus() == ThreadStatus::Ready) {
system.PrepareReschedule(thread->GetProcessorID());
}
return RESULT_SUCCESS;
}
/// Called when a thread exits
static void ExitThread(Core::System& system) {
LOG_DEBUG(Kernel_SVC, "called, pc=0x{:08X}", system.CurrentArmInterface().GetPC());
auto* const current_thread = system.CurrentScheduler().GetCurrentThread();
current_thread->Stop();
system.GlobalScheduler().RemoveThread(SharedFrom(current_thread));
system.PrepareReschedule();
}
/// Sleep the current thread
static void SleepThread(Core::System& system, s64 nanoseconds) {
LOG_DEBUG(Kernel_SVC, "called nanoseconds={}", nanoseconds);
enum class SleepType : s64 {
YieldWithoutLoadBalancing = 0,
YieldWithLoadBalancing = -1,
YieldAndWaitForLoadBalancing = -2,
};
auto& scheduler = system.CurrentScheduler();
auto* const current_thread = scheduler.GetCurrentThread();
bool is_redundant = false;
if (nanoseconds <= 0) {
switch (static_cast<SleepType>(nanoseconds)) {
case SleepType::YieldWithoutLoadBalancing:
is_redundant = current_thread->YieldSimple();
break;
case SleepType::YieldWithLoadBalancing:
is_redundant = current_thread->YieldAndBalanceLoad();
break;
case SleepType::YieldAndWaitForLoadBalancing:
is_redundant = current_thread->YieldAndWaitForLoadBalancing();
break;
default:
UNREACHABLE_MSG("Unimplemented sleep yield type '{:016X}'!", nanoseconds);
}
} else {
current_thread->Sleep(nanoseconds);
}
if (is_redundant) {
// If it's redundant, the core is pretty much idle. Some games keep idling
// a core while it's doing nothing, we advance timing to avoid costly continuous
// calls.
system.CoreTiming().AddTicks(2000);
}
system.PrepareReschedule(current_thread->GetProcessorID());
}
/// Wait process wide key atomic
static ResultCode WaitProcessWideKeyAtomic(Core::System& system, VAddr mutex_addr,
VAddr condition_variable_addr, Handle thread_handle,
s64 nano_seconds) {
LOG_TRACE(
Kernel_SVC,
"called mutex_addr={:X}, condition_variable_addr={:X}, thread_handle=0x{:08X}, timeout={}",
mutex_addr, condition_variable_addr, thread_handle, nano_seconds);
if (Memory::IsKernelVirtualAddress(mutex_addr)) {
LOG_ERROR(
Kernel_SVC,
"Given mutex address must not be within the kernel address space. address=0x{:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS_STATE;
}
if (!Common::IsWordAligned(mutex_addr)) {
LOG_ERROR(Kernel_SVC, "Given mutex address must be word-aligned. address=0x{:016X}",
mutex_addr);
return ERR_INVALID_ADDRESS;
}
ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4));
auto* const current_process = system.Kernel().CurrentProcess();
const auto& handle_table = current_process->GetHandleTable();
std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
ASSERT(thread);
const auto release_result = current_process->GetMutex().Release(mutex_addr);
if (release_result.IsError()) {
return release_result;
}
Thread* current_thread = system.CurrentScheduler().GetCurrentThread();
current_thread->SetCondVarWaitAddress(condition_variable_addr);
current_thread->SetMutexWaitAddress(mutex_addr);
current_thread->SetWaitHandle(thread_handle);
current_thread->SetStatus(ThreadStatus::WaitCondVar);
current_thread->InvalidateWakeupCallback();
current_process->InsertConditionVariableThread(SharedFrom(current_thread));
current_thread->WakeAfterDelay(nano_seconds);
// Note: Deliberately don't attempt to inherit the lock owner's priority.
system.PrepareReschedule(current_thread->GetProcessorID());
return RESULT_SUCCESS;
}
/// Signal process wide key
static void SignalProcessWideKey(Core::System& system, VAddr condition_variable_addr, s32 target) {
LOG_TRACE(Kernel_SVC, "called, condition_variable_addr=0x{:X}, target=0x{:08X}",
condition_variable_addr, target);
ASSERT(condition_variable_addr == Common::AlignDown(condition_variable_addr, 4));
// Retrieve a list of all threads that are waiting for this condition variable.
auto* const current_process = system.Kernel().CurrentProcess();
std::vector<std::shared_ptr<Thread>> waiting_threads =
current_process->GetConditionVariableThreads(condition_variable_addr);
// Only process up to 'target' threads, unless 'target' is less equal 0, in which case process
// them all.
std::size_t last = waiting_threads.size();
if (target > 0)
last = std::min(waiting_threads.size(), static_cast<std::size_t>(target));
for (std::size_t index = 0; index < last; ++index) {
auto& thread = waiting_threads[index];
ASSERT(thread->GetCondVarWaitAddress() == condition_variable_addr);
// liberate Cond Var Thread.
current_process->RemoveConditionVariableThread(thread);
thread->SetCondVarWaitAddress(0);
const std::size_t current_core = system.CurrentCoreIndex();
auto& monitor = system.Monitor();
auto& memory = system.Memory();
// Atomically read the value of the mutex.
u32 mutex_val = 0;
u32 update_val = 0;
const VAddr mutex_address = thread->GetMutexWaitAddress();
do {
monitor.SetExclusive(current_core, mutex_address);
// If the mutex is not yet acquired, acquire it.
mutex_val = memory.Read32(mutex_address);
if (mutex_val != 0) {
update_val = mutex_val | Mutex::MutexHasWaitersFlag;
} else {
update_val = thread->GetWaitHandle();
}
} while (!monitor.ExclusiveWrite32(current_core, mutex_address, update_val));
if (mutex_val == 0) {
// We were able to acquire the mutex, resume this thread.
ASSERT(thread->GetStatus() == ThreadStatus::WaitCondVar);
thread->ResumeFromWait();
auto* const lock_owner = thread->GetLockOwner();
if (lock_owner != nullptr) {
lock_owner->RemoveMutexWaiter(thread);
}
thread->SetLockOwner(nullptr);
thread->SetMutexWaitAddress(0);
thread->SetWaitHandle(0);
thread->SetWaitSynchronizationResult(RESULT_SUCCESS);
system.PrepareReschedule(thread->GetProcessorID());
} else {
// The mutex is already owned by some other thread, make this thread wait on it.
const Handle owner_handle = static_cast<Handle>(mutex_val & Mutex::MutexOwnerMask);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto owner = handle_table.Get<Thread>(owner_handle);
ASSERT(owner);
ASSERT(thread->GetStatus() == ThreadStatus::WaitCondVar);
thread->InvalidateWakeupCallback();
thread->SetStatus(ThreadStatus::WaitMutex);
owner->AddMutexWaiter(thread);
system.PrepareReschedule(thread->GetProcessorID());
}
}
}
// Wait for an address (via Address Arbiter)
static ResultCode WaitForAddress(Core::System& system, VAddr address, u32 type, s32 value,
s64 timeout) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, timeout={}", address,
type, value, timeout);
// If the passed address is a kernel virtual address, return invalid memory state.
if (Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
return ERR_INVALID_ADDRESS_STATE;
}
// If the address is not properly aligned to 4 bytes, return invalid address.
if (!Common::IsWordAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
return ERR_INVALID_ADDRESS;
}
const auto arbitration_type = static_cast<AddressArbiter::ArbitrationType>(type);
auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter();
const ResultCode result =
address_arbiter.WaitForAddress(address, arbitration_type, value, timeout);
if (result == RESULT_SUCCESS) {
system.PrepareReschedule();
}
return result;
}
// Signals to an address (via Address Arbiter)
static ResultCode SignalToAddress(Core::System& system, VAddr address, u32 type, s32 value,
s32 num_to_wake) {
LOG_TRACE(Kernel_SVC, "called, address=0x{:X}, type=0x{:X}, value=0x{:X}, num_to_wake=0x{:X}",
address, type, value, num_to_wake);
// If the passed address is a kernel virtual address, return invalid memory state.
if (Memory::IsKernelVirtualAddress(address)) {
LOG_ERROR(Kernel_SVC, "Address is a kernel virtual address, address={:016X}", address);
return ERR_INVALID_ADDRESS_STATE;
}
// If the address is not properly aligned to 4 bytes, return invalid address.
if (!Common::IsWordAligned(address)) {
LOG_ERROR(Kernel_SVC, "Address is not word aligned, address={:016X}", address);
return ERR_INVALID_ADDRESS;
}
const auto signal_type = static_cast<AddressArbiter::SignalType>(type);
auto& address_arbiter = system.Kernel().CurrentProcess()->GetAddressArbiter();
return address_arbiter.SignalToAddress(address, signal_type, value, num_to_wake);
}
static void KernelDebug([[maybe_unused]] Core::System& system,
[[maybe_unused]] u32 kernel_debug_type, [[maybe_unused]] u64 param1,
[[maybe_unused]] u64 param2, [[maybe_unused]] u64 param3) {
// Intentionally do nothing, as this does nothing in released kernel binaries.
}
static void ChangeKernelTraceState([[maybe_unused]] Core::System& system,
[[maybe_unused]] u32 trace_state) {
// Intentionally do nothing, as this does nothing in released kernel binaries.
}
/// This returns the total CPU ticks elapsed since the CPU was powered-on
static u64 GetSystemTick(Core::System& system) {
LOG_TRACE(Kernel_SVC, "called");
auto& core_timing = system.CoreTiming();
// Returns the value of cntpct_el0 (https://switchbrew.org/wiki/SVC#svcGetSystemTick)
const u64 result{Core::Timing::CpuCyclesToClockCycles(system.CoreTiming().GetTicks())};
// Advance time to defeat dumb games that busy-wait for the frame to end.
core_timing.AddTicks(400);
return result;
}
/// Close a handle
static ResultCode CloseHandle(Core::System& system, Handle handle) {
LOG_TRACE(Kernel_SVC, "Closing handle 0x{:08X}", handle);
auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
return handle_table.Close(handle);
}
/// Clears the signaled state of an event or process.
static ResultCode ResetSignal(Core::System& system, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called handle 0x{:08X}", handle);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto event = handle_table.Get<ReadableEvent>(handle);
if (event) {
return event->Reset();
}
auto process = handle_table.Get<Process>(handle);
if (process) {
return process->ClearSignalState();
}
LOG_ERROR(Kernel_SVC, "Invalid handle (0x{:08X})", handle);
return ERR_INVALID_HANDLE;
}
/// Creates a TransferMemory object
static ResultCode CreateTransferMemory(Core::System& system, Handle* handle, VAddr addr, u64 size,
u32 permissions) {
LOG_DEBUG(Kernel_SVC, "called addr=0x{:X}, size=0x{:X}, perms=0x{:08X}", addr, size,
permissions);
if (!Common::Is4KBAligned(addr)) {
LOG_ERROR(Kernel_SVC, "Address ({:016X}) is not page aligned!", addr);
return ERR_INVALID_ADDRESS;
}
if (!Common::Is4KBAligned(size) || size == 0) {
LOG_ERROR(Kernel_SVC, "Size ({:016X}) is not page aligned or equal to zero!", size);
return ERR_INVALID_ADDRESS;
}
if (!IsValidAddressRange(addr, size)) {
LOG_ERROR(Kernel_SVC, "Address and size cause overflow! (address={:016X}, size={:016X})",
addr, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto perms = static_cast<MemoryPermission>(permissions);
if (perms != MemoryPermission::None && perms != MemoryPermission::Read &&
perms != MemoryPermission::ReadWrite) {
LOG_ERROR(Kernel_SVC, "Invalid memory permissions for transfer memory! (perms={:08X})",
permissions);
return ERR_INVALID_MEMORY_PERMISSIONS;
}
auto& kernel = system.Kernel();
auto transfer_mem_handle = TransferMemory::Create(kernel, system.Memory(), addr, size, perms);
if (const auto reserve_result{transfer_mem_handle->Reserve()}; reserve_result.IsError()) {
return reserve_result;
}
auto& handle_table = kernel.CurrentProcess()->GetHandleTable();
const auto result{handle_table.Create(std::move(transfer_mem_handle))};
if (result.Failed()) {
return result.Code();
}
*handle = *result;
return RESULT_SUCCESS;
}
static ResultCode MapTransferMemory(Core::System& system, Handle handle, VAddr address, u64 size,
u32 permission_raw) {
LOG_DEBUG(Kernel_SVC,
"called. handle=0x{:08X}, address=0x{:016X}, size=0x{:016X}, permissions=0x{:08X}",
handle, address, size, permission_raw);
if (!Common::Is4KBAligned(address)) {
LOG_ERROR(Kernel_SVC, "Transfer memory addresses must be 4KB aligned (size=0x{:016X}).",
address);
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC,
"Transfer memory sizes must be 4KB aligned and not be zero (size=0x{:016X}).",
size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(address, size)) {
LOG_ERROR(Kernel_SVC,
"Given address and size overflows the 64-bit range (address=0x{:016X}, "
"size=0x{:016X}).",
address, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto permissions = static_cast<MemoryPermission>(permission_raw);
if (permissions != MemoryPermission::None && permissions != MemoryPermission::Read &&
permissions != MemoryPermission::ReadWrite) {
LOG_ERROR(Kernel_SVC, "Invalid transfer memory permissions given (permissions=0x{:08X}).",
permission_raw);
return ERR_INVALID_STATE;
}
const auto& kernel = system.Kernel();
const auto* const current_process = kernel.CurrentProcess();
const auto& handle_table = current_process->GetHandleTable();
auto transfer_memory = handle_table.Get<TransferMemory>(handle);
if (!transfer_memory) {
LOG_ERROR(Kernel_SVC, "Nonexistent transfer memory handle given (handle=0x{:08X}).",
handle);
return ERR_INVALID_HANDLE;
}
if (!current_process->VMManager().IsWithinASLRRegion(address, size)) {
LOG_ERROR(Kernel_SVC,
"Given address and size don't fully fit within the ASLR region "
"(address=0x{:016X}, size=0x{:016X}).",
address, size);
return ERR_INVALID_MEMORY_RANGE;
}
return transfer_memory->MapMemory(address, size, permissions);
}
static ResultCode UnmapTransferMemory(Core::System& system, Handle handle, VAddr address,
u64 size) {
LOG_DEBUG(Kernel_SVC, "called. handle=0x{:08X}, address=0x{:016X}, size=0x{:016X}", handle,
address, size);
if (!Common::Is4KBAligned(address)) {
LOG_ERROR(Kernel_SVC, "Transfer memory addresses must be 4KB aligned (size=0x{:016X}).",
address);
return ERR_INVALID_ADDRESS;
}
if (size == 0 || !Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC,
"Transfer memory sizes must be 4KB aligned and not be zero (size=0x{:016X}).",
size);
return ERR_INVALID_SIZE;
}
if (!IsValidAddressRange(address, size)) {
LOG_ERROR(Kernel_SVC,
"Given address and size overflows the 64-bit range (address=0x{:016X}, "
"size=0x{:016X}).",
address, size);
return ERR_INVALID_ADDRESS_STATE;
}
const auto& kernel = system.Kernel();
const auto* const current_process = kernel.CurrentProcess();
const auto& handle_table = current_process->GetHandleTable();
auto transfer_memory = handle_table.Get<TransferMemory>(handle);
if (!transfer_memory) {
LOG_ERROR(Kernel_SVC, "Nonexistent transfer memory handle given (handle=0x{:08X}).",
handle);
return ERR_INVALID_HANDLE;
}
if (!current_process->VMManager().IsWithinASLRRegion(address, size)) {
LOG_ERROR(Kernel_SVC,
"Given address and size don't fully fit within the ASLR region "
"(address=0x{:016X}, size=0x{:016X}).",
address, size);
return ERR_INVALID_MEMORY_RANGE;
}
return transfer_memory->UnmapMemory(address, size);
}
static ResultCode GetThreadCoreMask(Core::System& system, Handle thread_handle, u32* core,
u64* mask) {
LOG_TRACE(Kernel_SVC, "called, handle=0x{:08X}", thread_handle);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
thread_handle);
return ERR_INVALID_HANDLE;
}
*core = thread->GetIdealCore();
*mask = thread->GetAffinityMask();
return RESULT_SUCCESS;
}
static ResultCode SetThreadCoreMask(Core::System& system, Handle thread_handle, u32 core,
u64 affinity_mask) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, core=0x{:X}, affinity_mask=0x{:016X}",
thread_handle, core, affinity_mask);
const auto* const current_process = system.Kernel().CurrentProcess();
if (core == static_cast<u32>(THREADPROCESSORID_IDEAL)) {
const u8 ideal_cpu_core = current_process->GetIdealCore();
ASSERT(ideal_cpu_core != static_cast<u8>(THREADPROCESSORID_IDEAL));
// Set the target CPU to the ideal core specified by the process.
core = ideal_cpu_core;
affinity_mask = 1ULL << core;
} else {
const u64 core_mask = current_process->GetCoreMask();
if ((core_mask | affinity_mask) != core_mask) {
LOG_ERROR(
Kernel_SVC,
"Invalid processor ID specified (core_mask=0x{:08X}, affinity_mask=0x{:016X})",
core_mask, affinity_mask);
return ERR_INVALID_PROCESSOR_ID;
}
if (affinity_mask == 0) {
LOG_ERROR(Kernel_SVC, "Specfified affinity mask is zero.");
return ERR_INVALID_COMBINATION;
}
if (core < Core::NUM_CPU_CORES) {
if ((affinity_mask & (1ULL << core)) == 0) {
LOG_ERROR(Kernel_SVC,
"Core is not enabled for the current mask, core={}, mask={:016X}", core,
affinity_mask);
return ERR_INVALID_COMBINATION;
}
} else if (core != static_cast<u32>(THREADPROCESSORID_DONT_CARE) &&
core != static_cast<u32>(THREADPROCESSORID_DONT_UPDATE)) {
LOG_ERROR(Kernel_SVC, "Invalid processor ID specified (core={}).", core);
return ERR_INVALID_PROCESSOR_ID;
}
}
const auto& handle_table = current_process->GetHandleTable();
const std::shared_ptr<Thread> thread = handle_table.Get<Thread>(thread_handle);
if (!thread) {
LOG_ERROR(Kernel_SVC, "Thread handle does not exist, thread_handle=0x{:08X}",
thread_handle);
return ERR_INVALID_HANDLE;
}
system.PrepareReschedule(thread->GetProcessorID());
thread->ChangeCore(core, affinity_mask);
system.PrepareReschedule(thread->GetProcessorID());
return RESULT_SUCCESS;
}
static ResultCode CreateSharedMemory(Core::System& system, Handle* handle, u64 size,
u32 local_permissions, u32 remote_permissions) {
LOG_TRACE(Kernel_SVC, "called, size=0x{:X}, localPerms=0x{:08X}, remotePerms=0x{:08X}", size,
local_permissions, remote_permissions);
if (size == 0) {
LOG_ERROR(Kernel_SVC, "Size is 0");
return ERR_INVALID_SIZE;
}
if (!Common::Is4KBAligned(size)) {
LOG_ERROR(Kernel_SVC, "Size is not aligned to 4KB, 0x{:016X}", size);
return ERR_INVALID_SIZE;
}
if (size >= MAIN_MEMORY_SIZE) {
LOG_ERROR(Kernel_SVC, "Size is not less than 8GB, 0x{:016X}", size);
return ERR_INVALID_SIZE;
}
const auto local_perms = static_cast<MemoryPermission>(local_permissions);
if (local_perms != MemoryPermission::Read && local_perms != MemoryPermission::ReadWrite) {
LOG_ERROR(Kernel_SVC,
"Invalid local memory permissions, expected Read or ReadWrite but got "
"local_permissions={}",
static_cast<u32>(local_permissions));
return ERR_INVALID_MEMORY_PERMISSIONS;
}
const auto remote_perms = static_cast<MemoryPermission>(remote_permissions);
if (remote_perms != MemoryPermission::Read && remote_perms != MemoryPermission::ReadWrite &&
remote_perms != MemoryPermission::DontCare) {
LOG_ERROR(Kernel_SVC,
"Invalid remote memory permissions, expected Read, ReadWrite or DontCare but got "
"remote_permissions={}",
static_cast<u32>(remote_permissions));
return ERR_INVALID_MEMORY_PERMISSIONS;
}
auto& kernel = system.Kernel();
auto process = kernel.CurrentProcess();
auto& handle_table = process->GetHandleTable();
auto shared_mem_handle = SharedMemory::Create(kernel, process, size, local_perms, remote_perms);
CASCADE_RESULT(*handle, handle_table.Create(shared_mem_handle));
return RESULT_SUCCESS;
}
static ResultCode CreateEvent(Core::System& system, Handle* write_handle, Handle* read_handle) {
LOG_DEBUG(Kernel_SVC, "called");
auto& kernel = system.Kernel();
const auto [readable_event, writable_event] =
WritableEvent::CreateEventPair(kernel, "CreateEvent");
HandleTable& handle_table = kernel.CurrentProcess()->GetHandleTable();
const auto write_create_result = handle_table.Create(writable_event);
if (write_create_result.Failed()) {
return write_create_result.Code();
}
*write_handle = *write_create_result;
const auto read_create_result = handle_table.Create(readable_event);
if (read_create_result.Failed()) {
handle_table.Close(*write_create_result);
return read_create_result.Code();
}
*read_handle = *read_create_result;
LOG_DEBUG(Kernel_SVC,
"successful. Writable event handle=0x{:08X}, Readable event handle=0x{:08X}",
*write_create_result, *read_create_result);
return RESULT_SUCCESS;
}
static ResultCode ClearEvent(Core::System& system, Handle handle) {
LOG_TRACE(Kernel_SVC, "called, event=0x{:08X}", handle);
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto writable_event = handle_table.Get<WritableEvent>(handle);
if (writable_event) {
writable_event->Clear();
return RESULT_SUCCESS;
}
auto readable_event = handle_table.Get<ReadableEvent>(handle);
if (readable_event) {
readable_event->Clear();
return RESULT_SUCCESS;
}
LOG_ERROR(Kernel_SVC, "Event handle does not exist, handle=0x{:08X}", handle);
return ERR_INVALID_HANDLE;
}
static ResultCode SignalEvent(Core::System& system, Handle handle) {
LOG_DEBUG(Kernel_SVC, "called. Handle=0x{:08X}", handle);
HandleTable& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
auto writable_event = handle_table.Get<WritableEvent>(handle);
if (!writable_event) {
LOG_ERROR(Kernel_SVC, "Non-existent writable event handle used (0x{:08X})", handle);
return ERR_INVALID_HANDLE;
}
writable_event->Signal();
system.PrepareReschedule();
return RESULT_SUCCESS;
}
static ResultCode GetProcessInfo(Core::System& system, u64* out, Handle process_handle, u32 type) {
LOG_DEBUG(Kernel_SVC, "called, handle=0x{:08X}, type=0x{:X}", process_handle, type);
// This function currently only allows retrieving a process' status.
enum class InfoType {
Status,
};
const auto& handle_table = system.Kernel().CurrentProcess()->GetHandleTable();
const auto process = handle_table.Get<Process>(process_handle);
if (!process) {
LOG_ERROR(Kernel_SVC, "Process handle does not exist, process_handle=0x{:08X}",
process_handle);
return ERR_INVALID_HANDLE;
}
const auto info_type = static_cast<InfoType>(type);
if (info_type != InfoType::Status) {
LOG_ERROR(Kernel_SVC, "Expected info_type to be Status but got {} instead", type);
return ERR_INVALID_ENUM_VALUE;
}
*out = static_cast<u64>(process->GetStatus());
return RESULT_SUCCESS;
}
static ResultCode CreateResourceLimit(Core::System& system, Handle* out_handle) {
LOG_DEBUG(Kernel_SVC, "called");
auto& kernel = system.Kernel();
auto resource_limit = ResourceLimit::Create(kernel);
auto* const current_process = kernel.CurrentProcess();
ASSERT(current_process != nullptr);
const auto handle = current_process->GetHandleTable().Create(std::move(resource_limit));
if (handle.Failed()) {
return handle.Code();
}
*out_handle = *handle;
return RESULT_SUCCESS;
}
static ResultCode GetResourceLimitLimitValue(Core::System& system, u64* out_value,
Handle resource_limit, u32 resource_type) {
LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}", resource_limit, resource_type);
const auto limit_value = RetrieveResourceLimitValue(system, resource_limit, resource_type,
ResourceLimitValueType::LimitValue);
if (limit_value.Failed()) {
return limit_value.Code();
}
*out_value = static_cast<u64>(*limit_value);
return RESULT_SUCCESS;
}
static ResultCode GetResourceLimitCurrentValue(Core::System& system, u64* out_value,
Handle resource_limit, u32 resource_type) {
LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}", resource_limit, resource_type);
const auto current_value = RetrieveResourceLimitValue(system, resource_limit, resource_type,
ResourceLimitValueType::CurrentValue);
if (current_value.Failed()) {
return current_value.Code();
}
*out_value = static_cast<u64>(*current_value);
return RESULT_SUCCESS;
}
static ResultCode SetResourceLimitLimitValue(Core::System& system, Handle resource_limit,
u32 resource_type, u64 value) {
LOG_DEBUG(Kernel_SVC, "called. Handle={:08X}, Resource type={}, Value={}", resource_limit,
resource_type, value);
const auto type = static_cast<ResourceType>(resource_type);
if (!IsValidResourceType(type)) {
LOG_ERROR(Kernel_SVC, "Invalid resource limit type: '{}'", resource_type);
return ERR_INVALID_ENUM_VALUE;
}
auto* const current_process = system.Kernel().CurrentProcess();
ASSERT(current_process != nullptr);
auto resource_limit_object =
current_process->GetHandleTable().Get<ResourceLimit>(resource_limit);
if (!resource_limit_object) {
LOG_ERROR(Kernel_SVC, "Handle to non-existent resource limit instance used. Handle={:08X}",
resource_limit);
return ERR_INVALID_HANDLE;
}
const auto set_result = resource_limit_object->SetLimitValue(type, static_cast<s64>(value));
if (set_result.IsError()) {
LOG_ERROR(
Kernel_SVC,
"Attempted to lower resource limit ({}) for category '{}' below its current value ({})",
resource_limit_object->GetMaxResourceValue(type), resource_type,
resource_limit_object->GetCurrentResourceValue(type));
return set_result;
}
return RESULT_SUCCESS;
}
static ResultCode GetProcessList(Core::System& system, u32* out_num_processes,
VAddr out_process_ids, u32 out_process_ids_size) {
LOG_DEBUG(Kernel_SVC, "called. out_process_ids=0x{:016X}, out_process_ids_size={}",
out_process_ids, out_process_ids_size);
// If the supplied size is negative or greater than INT32_MAX / sizeof(u64), bail.
if ((out_process_ids_size & 0xF0000000) != 0) {
LOG_ERROR(Kernel_SVC,
"Supplied size outside [0, 0x0FFFFFFF] range. out_process_ids_size={}",
out_process_ids_size);
return ERR_OUT_OF_RANGE;
}
const auto& kernel = system.Kernel();
const auto& vm_manager = kernel.CurrentProcess()->VMManager();
const auto total_copy_size = out_process_ids_size * sizeof(u64);
if (out_process_ids_size > 0 &&
!vm_manager.IsWithinAddressSpace(out_process_ids, total_copy_size)) {
LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}",
out_process_ids, out_process_ids + total_copy_size);
return ERR_INVALID_ADDRESS_STATE;
}
auto& memory = system.Memory();
const auto& process_list = kernel.GetProcessList();
const auto num_processes = process_list.size();
const auto copy_amount = std::min(std::size_t{out_process_ids_size}, num_processes);
for (std::size_t i = 0; i < copy_amount; ++i) {
memory.Write64(out_process_ids, process_list[i]->GetProcessID());
out_process_ids += sizeof(u64);
}
*out_num_processes = static_cast<u32>(num_processes);
return RESULT_SUCCESS;
}
static ResultCode GetThreadList(Core::System& system, u32* out_num_threads, VAddr out_thread_ids,
u32 out_thread_ids_size, Handle debug_handle) {
// TODO: Handle this case when debug events are supported.
UNIMPLEMENTED_IF(debug_handle != InvalidHandle);
LOG_DEBUG(Kernel_SVC, "called. out_thread_ids=0x{:016X}, out_thread_ids_size={}",
out_thread_ids, out_thread_ids_size);
// If the size is negative or larger than INT32_MAX / sizeof(u64)
if ((out_thread_ids_size & 0xF0000000) != 0) {
LOG_ERROR(Kernel_SVC, "Supplied size outside [0, 0x0FFFFFFF] range. size={}",
out_thread_ids_size);
return ERR_OUT_OF_RANGE;
}
const auto* const current_process = system.Kernel().CurrentProcess();
const auto& vm_manager = current_process->VMManager();
const auto total_copy_size = out_thread_ids_size * sizeof(u64);
if (out_thread_ids_size > 0 &&
!vm_manager.IsWithinAddressSpace(out_thread_ids, total_copy_size)) {
LOG_ERROR(Kernel_SVC, "Address range outside address space. begin=0x{:016X}, end=0x{:016X}",
out_thread_ids, out_thread_ids + total_copy_size);
return ERR_INVALID_ADDRESS_STATE;
}
auto& memory = system.Memory();
const auto& thread_list = current_process->GetThreadList();
const auto num_threads = thread_list.size();
const auto copy_amount = std::min(std::size_t{out_thread_ids_size}, num_threads);
auto list_iter = thread_list.cbegin();
for (std::size_t i = 0; i < copy_amount; ++i, ++list_iter) {
memory.Write64(out_thread_ids, (*list_iter)->GetThreadID());
out_thread_ids += sizeof(u64);
}
*out_num_threads = static_cast<u32>(num_threads);
return RESULT_SUCCESS;
}
namespace {
struct FunctionDef {
using Func = void(Core::System&);
u32 id;
Func* func;
const char* name;
};
} // namespace
static const FunctionDef SVC_Table[] = {
{0x00, nullptr, "Unknown"},
{0x01, SvcWrap<SetHeapSize>, "SetHeapSize"},
{0x02, SvcWrap<SetMemoryPermission>, "SetMemoryPermission"},
{0x03, SvcWrap<SetMemoryAttribute>, "SetMemoryAttribute"},
{0x04, SvcWrap<MapMemory>, "MapMemory"},
{0x05, SvcWrap<UnmapMemory>, "UnmapMemory"},
{0x06, SvcWrap<QueryMemory>, "QueryMemory"},
{0x07, SvcWrap<ExitProcess>, "ExitProcess"},
{0x08, SvcWrap<CreateThread>, "CreateThread"},
{0x09, SvcWrap<StartThread>, "StartThread"},
{0x0A, SvcWrap<ExitThread>, "ExitThread"},
{0x0B, SvcWrap<SleepThread>, "SleepThread"},
{0x0C, SvcWrap<GetThreadPriority>, "GetThreadPriority"},
{0x0D, SvcWrap<SetThreadPriority>, "SetThreadPriority"},
{0x0E, SvcWrap<GetThreadCoreMask>, "GetThreadCoreMask"},
{0x0F, SvcWrap<SetThreadCoreMask>, "SetThreadCoreMask"},
{0x10, SvcWrap<GetCurrentProcessorNumber>, "GetCurrentProcessorNumber"},
{0x11, SvcWrap<SignalEvent>, "SignalEvent"},
{0x12, SvcWrap<ClearEvent>, "ClearEvent"},
{0x13, SvcWrap<MapSharedMemory>, "MapSharedMemory"},
{0x14, SvcWrap<UnmapSharedMemory>, "UnmapSharedMemory"},
{0x15, SvcWrap<CreateTransferMemory>, "CreateTransferMemory"},
{0x16, SvcWrap<CloseHandle>, "CloseHandle"},
{0x17, SvcWrap<ResetSignal>, "ResetSignal"},
{0x18, SvcWrap<WaitSynchronization>, "WaitSynchronization"},
{0x19, SvcWrap<CancelSynchronization>, "CancelSynchronization"},
{0x1A, SvcWrap<ArbitrateLock>, "ArbitrateLock"},
{0x1B, SvcWrap<ArbitrateUnlock>, "ArbitrateUnlock"},
{0x1C, SvcWrap<WaitProcessWideKeyAtomic>, "WaitProcessWideKeyAtomic"},
{0x1D, SvcWrap<SignalProcessWideKey>, "SignalProcessWideKey"},
{0x1E, SvcWrap<GetSystemTick>, "GetSystemTick"},
{0x1F, SvcWrap<ConnectToNamedPort>, "ConnectToNamedPort"},
{0x20, nullptr, "SendSyncRequestLight"},
{0x21, SvcWrap<SendSyncRequest>, "SendSyncRequest"},
{0x22, nullptr, "SendSyncRequestWithUserBuffer"},
{0x23, nullptr, "SendAsyncRequestWithUserBuffer"},
{0x24, SvcWrap<GetProcessId>, "GetProcessId"},
{0x25, SvcWrap<GetThreadId>, "GetThreadId"},
{0x26, SvcWrap<Break>, "Break"},
{0x27, SvcWrap<OutputDebugString>, "OutputDebugString"},
{0x28, nullptr, "ReturnFromException"},
{0x29, SvcWrap<GetInfo>, "GetInfo"},
{0x2A, nullptr, "FlushEntireDataCache"},
{0x2B, nullptr, "FlushDataCache"},
{0x2C, SvcWrap<MapPhysicalMemory>, "MapPhysicalMemory"},
{0x2D, SvcWrap<UnmapPhysicalMemory>, "UnmapPhysicalMemory"},
{0x2E, nullptr, "GetFutureThreadInfo"},
{0x2F, nullptr, "GetLastThreadInfo"},
{0x30, SvcWrap<GetResourceLimitLimitValue>, "GetResourceLimitLimitValue"},
{0x31, SvcWrap<GetResourceLimitCurrentValue>, "GetResourceLimitCurrentValue"},
{0x32, SvcWrap<SetThreadActivity>, "SetThreadActivity"},
{0x33, SvcWrap<GetThreadContext>, "GetThreadContext"},
{0x34, SvcWrap<WaitForAddress>, "WaitForAddress"},
{0x35, SvcWrap<SignalToAddress>, "SignalToAddress"},
{0x36, nullptr, "SynchronizePreemptionState"},
{0x37, nullptr, "Unknown"},
{0x38, nullptr, "Unknown"},
{0x39, nullptr, "Unknown"},
{0x3A, nullptr, "Unknown"},
{0x3B, nullptr, "Unknown"},
{0x3C, SvcWrap<KernelDebug>, "KernelDebug"},
{0x3D, SvcWrap<ChangeKernelTraceState>, "ChangeKernelTraceState"},
{0x3E, nullptr, "Unknown"},
{0x3F, nullptr, "Unknown"},
{0x40, nullptr, "CreateSession"},
{0x41, nullptr, "AcceptSession"},
{0x42, nullptr, "ReplyAndReceiveLight"},
{0x43, nullptr, "ReplyAndReceive"},
{0x44, nullptr, "ReplyAndReceiveWithUserBuffer"},
{0x45, SvcWrap<CreateEvent>, "CreateEvent"},
{0x46, nullptr, "Unknown"},
{0x47, nullptr, "Unknown"},
{0x48, nullptr, "MapPhysicalMemoryUnsafe"},
{0x49, nullptr, "UnmapPhysicalMemoryUnsafe"},
{0x4A, nullptr, "SetUnsafeLimit"},
{0x4B, nullptr, "CreateCodeMemory"},
{0x4C, nullptr, "ControlCodeMemory"},
{0x4D, nullptr, "SleepSystem"},
{0x4E, nullptr, "ReadWriteRegister"},
{0x4F, nullptr, "SetProcessActivity"},
{0x50, SvcWrap<CreateSharedMemory>, "CreateSharedMemory"},
{0x51, SvcWrap<MapTransferMemory>, "MapTransferMemory"},
{0x52, SvcWrap<UnmapTransferMemory>, "UnmapTransferMemory"},
{0x53, nullptr, "CreateInterruptEvent"},
{0x54, nullptr, "QueryPhysicalAddress"},
{0x55, nullptr, "QueryIoMapping"},
{0x56, nullptr, "CreateDeviceAddressSpace"},
{0x57, nullptr, "AttachDeviceAddressSpace"},
{0x58, nullptr, "DetachDeviceAddressSpace"},
{0x59, nullptr, "MapDeviceAddressSpaceByForce"},
{0x5A, nullptr, "MapDeviceAddressSpaceAligned"},
{0x5B, nullptr, "MapDeviceAddressSpace"},
{0x5C, nullptr, "UnmapDeviceAddressSpace"},
{0x5D, nullptr, "InvalidateProcessDataCache"},
{0x5E, nullptr, "StoreProcessDataCache"},
{0x5F, nullptr, "FlushProcessDataCache"},
{0x60, nullptr, "DebugActiveProcess"},
{0x61, nullptr, "BreakDebugProcess"},
{0x62, nullptr, "TerminateDebugProcess"},
{0x63, nullptr, "GetDebugEvent"},
{0x64, nullptr, "ContinueDebugEvent"},
{0x65, SvcWrap<GetProcessList>, "GetProcessList"},
{0x66, SvcWrap<GetThreadList>, "GetThreadList"},
{0x67, nullptr, "GetDebugThreadContext"},
{0x68, nullptr, "SetDebugThreadContext"},
{0x69, nullptr, "QueryDebugProcessMemory"},
{0x6A, nullptr, "ReadDebugProcessMemory"},
{0x6B, nullptr, "WriteDebugProcessMemory"},
{0x6C, nullptr, "SetHardwareBreakPoint"},
{0x6D, nullptr, "GetDebugThreadParam"},
{0x6E, nullptr, "Unknown"},
{0x6F, nullptr, "GetSystemInfo"},
{0x70, nullptr, "CreatePort"},
{0x71, nullptr, "ManageNamedPort"},
{0x72, nullptr, "ConnectToPort"},
{0x73, nullptr, "SetProcessMemoryPermission"},
{0x74, nullptr, "MapProcessMemory"},
{0x75, nullptr, "UnmapProcessMemory"},
{0x76, SvcWrap<QueryProcessMemory>, "QueryProcessMemory"},
{0x77, SvcWrap<MapProcessCodeMemory>, "MapProcessCodeMemory"},
{0x78, SvcWrap<UnmapProcessCodeMemory>, "UnmapProcessCodeMemory"},
{0x79, nullptr, "CreateProcess"},
{0x7A, nullptr, "StartProcess"},
{0x7B, nullptr, "TerminateProcess"},
{0x7C, SvcWrap<GetProcessInfo>, "GetProcessInfo"},
{0x7D, SvcWrap<CreateResourceLimit>, "CreateResourceLimit"},
{0x7E, SvcWrap<SetResourceLimitLimitValue>, "SetResourceLimitLimitValue"},
{0x7F, nullptr, "CallSecureMonitor"},
};
static const FunctionDef* GetSVCInfo(u32 func_num) {
if (func_num >= std::size(SVC_Table)) {
LOG_ERROR(Kernel_SVC, "Unknown svc=0x{:02X}", func_num);
return nullptr;
}
return &SVC_Table[func_num];
}
MICROPROFILE_DEFINE(Kernel_SVC, "Kernel", "SVC", MP_RGB(70, 200, 70));
void CallSVC(Core::System& system, u32 immediate) {
MICROPROFILE_SCOPE(Kernel_SVC);
// Lock the global kernel mutex when we enter the kernel HLE.
std::lock_guard lock{HLE::g_hle_lock};
const FunctionDef* info = GetSVCInfo(immediate);
if (info) {
if (info->func) {
info->func(system);
} else {
LOG_CRITICAL(Kernel_SVC, "Unimplemented SVC function {}(..)", info->name);
}
} else {
LOG_CRITICAL(Kernel_SVC, "Unknown SVC function 0x{:X}", immediate);
}
}
} // namespace Kernel