// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cstring>
#include <numeric>
#include <type_traits>
#include "common/alignment.h"
#include "common/color.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/microprofile.h"
#include "common/vector_math.h"
#include "core/core_timing.h"
#include "core/hle/service/gsp_gpu.h"
#include "core/hw/gpu.h"
#include "core/hw/hw.h"
#include "core/memory.h"
#include "core/tracer/recorder.h"
#include "video_core/command_processor.h"
#include "video_core/debug_utils/debug_utils.h"
#include "video_core/rasterizer_interface.h"
#include "video_core/renderer_base.h"
#include "video_core/utils.h"
#include "video_core/video_core.h"
namespace GPU {
Regs g_regs;
/// 268MHz CPU clocks / 60Hz frames per second
const u64 frame_ticks = static_cast<u64>(BASE_CLOCK_RATE / SCREEN_REFRESH_RATE);
/// Event id for CoreTiming
static int vblank_event;
template <typename T>
inline void Read(T& var, const u32 raw_addr) {
u32 addr = raw_addr - HW::VADDR_GPU;
u32 index = addr / 4;
// Reads other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
LOG_ERROR(HW_GPU, "unknown Read%lu @ 0x%08X", sizeof(var) * 8, addr);
return;
}
var = g_regs[addr / 4];
}
static Math::Vec4<u8> DecodePixel(Regs::PixelFormat input_format, const u8* src_pixel) {
switch (input_format) {
case Regs::PixelFormat::RGBA8:
return Color::DecodeRGBA8(src_pixel);
case Regs::PixelFormat::RGB8:
return Color::DecodeRGB8(src_pixel);
case Regs::PixelFormat::RGB565:
return Color::DecodeRGB565(src_pixel);
case Regs::PixelFormat::RGB5A1:
return Color::DecodeRGB5A1(src_pixel);
case Regs::PixelFormat::RGBA4:
return Color::DecodeRGBA4(src_pixel);
default:
LOG_ERROR(HW_GPU, "Unknown source framebuffer format %x", input_format);
return {0, 0, 0, 0};
}
}
MICROPROFILE_DEFINE(GPU_DisplayTransfer, "GPU", "DisplayTransfer", MP_RGB(100, 100, 255));
MICROPROFILE_DEFINE(GPU_CmdlistProcessing, "GPU", "Cmdlist Processing", MP_RGB(100, 255, 100));
static void MemoryFill(const Regs::MemoryFillConfig& config) {
const PAddr start_addr = config.GetStartAddress();
const PAddr end_addr = config.GetEndAddress();
// TODO: do hwtest with these cases
if (!Memory::IsValidPhysicalAddress(start_addr)) {
LOG_CRITICAL(HW_GPU, "invalid start address 0x%08X", start_addr);
return;
}
if (!Memory::IsValidPhysicalAddress(end_addr)) {
LOG_CRITICAL(HW_GPU, "invalid end address 0x%08X", end_addr);
return;
}
if (end_addr <= start_addr) {
LOG_CRITICAL(HW_GPU, "invalid memory range from 0x%08X to 0x%08X", start_addr, end_addr);
return;
}
u8* start = Memory::GetPhysicalPointer(start_addr);
u8* end = Memory::GetPhysicalPointer(end_addr);
// TODO: Consider always accelerating and returning vector of
// regions that the accelerated fill did not cover to
// reduce/eliminate the fill that the cpu has to do.
// This would also mean that the flush below is not needed.
// Fill should first flush all surfaces that touch but are
// not completely within the fill range.
// Then fill all completely covered surfaces, and return the
// regions that were between surfaces or within the touching
// ones for cpu to manually fill here.
if (VideoCore::g_renderer->Rasterizer()->AccelerateFill(config))
return;
Memory::RasterizerFlushAndInvalidateRegion(config.GetStartAddress(),
config.GetEndAddress() - config.GetStartAddress());
if (config.fill_24bit) {
// fill with 24-bit values
for (u8* ptr = start; ptr < end; ptr += 3) {
ptr[0] = config.value_24bit_r;
ptr[1] = config.value_24bit_g;
ptr[2] = config.value_24bit_b;
}
} else if (config.fill_32bit) {
// fill with 32-bit values
if (end > start) {
u32 value = config.value_32bit;
size_t len = (end - start) / sizeof(u32);
for (size_t i = 0; i < len; ++i)
memcpy(&start[i * sizeof(u32)], &value, sizeof(u32));
}
} else {
// fill with 16-bit values
u16 value_16bit = config.value_16bit.Value();
for (u8* ptr = start; ptr < end; ptr += sizeof(u16))
memcpy(ptr, &value_16bit, sizeof(u16));
}
}
static void DisplayTransfer(const Regs::DisplayTransferConfig& config) {
const PAddr src_addr = config.GetPhysicalInputAddress();
const PAddr dst_addr = config.GetPhysicalOutputAddress();
// TODO: do hwtest with these cases
if (!Memory::IsValidPhysicalAddress(src_addr)) {
LOG_CRITICAL(HW_GPU, "invalid input address 0x%08X", src_addr);
return;
}
if (!Memory::IsValidPhysicalAddress(dst_addr)) {
LOG_CRITICAL(HW_GPU, "invalid output address 0x%08X", dst_addr);
return;
}
if (config.input_width == 0) {
LOG_CRITICAL(HW_GPU, "zero input width");
return;
}
if (config.input_height == 0) {
LOG_CRITICAL(HW_GPU, "zero input height");
return;
}
if (config.output_width == 0) {
LOG_CRITICAL(HW_GPU, "zero output width");
return;
}
if (config.output_height == 0) {
LOG_CRITICAL(HW_GPU, "zero output height");
return;
}
if (VideoCore::g_renderer->Rasterizer()->AccelerateDisplayTransfer(config))
return;
u8* src_pointer = Memory::GetPhysicalPointer(src_addr);
u8* dst_pointer = Memory::GetPhysicalPointer(dst_addr);
if (config.scaling > config.ScaleXY) {
LOG_CRITICAL(HW_GPU, "Unimplemented display transfer scaling mode %u",
config.scaling.Value());
UNIMPLEMENTED();
return;
}
if (config.input_linear && config.scaling != config.NoScale) {
LOG_CRITICAL(HW_GPU, "Scaling is only implemented on tiled input");
UNIMPLEMENTED();
return;
}
int horizontal_scale = config.scaling != config.NoScale ? 1 : 0;
int vertical_scale = config.scaling == config.ScaleXY ? 1 : 0;
u32 output_width = config.output_width >> horizontal_scale;
u32 output_height = config.output_height >> vertical_scale;
u32 input_size =
config.input_width * config.input_height * GPU::Regs::BytesPerPixel(config.input_format);
u32 output_size = output_width * output_height * GPU::Regs::BytesPerPixel(config.output_format);
Memory::RasterizerFlushRegion(config.GetPhysicalInputAddress(), input_size);
Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(), output_size);
for (u32 y = 0; y < output_height; ++y) {
for (u32 x = 0; x < output_width; ++x) {
Math::Vec4<u8> src_color;
// Calculate the [x,y] position of the input image
// based on the current output position and the scale
u32 input_x = x << horizontal_scale;
u32 input_y = y << vertical_scale;
u32 output_y;
if (config.flip_vertically) {
// Flip the y value of the output data,
// we do this after calculating the [x,y] position of the input image
// to account for the scaling options.
output_y = output_height - y - 1;
} else {
output_y = y;
}
u32 dst_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.output_format);
u32 src_bytes_per_pixel = GPU::Regs::BytesPerPixel(config.input_format);
u32 src_offset;
u32 dst_offset;
if (config.input_linear) {
if (!config.dont_swizzle) {
// Interpret the input as linear and the output as tiled
u32 coarse_y = output_y & ~7;
u32 stride = output_width * dst_bytes_per_pixel;
src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel;
dst_offset = VideoCore::GetMortonOffset(x, output_y, dst_bytes_per_pixel) +
coarse_y * stride;
} else {
// Both input and output are linear
src_offset = (input_x + input_y * config.input_width) * src_bytes_per_pixel;
dst_offset = (x + output_y * output_width) * dst_bytes_per_pixel;
}
} else {
if (!config.dont_swizzle) {
// Interpret the input as tiled and the output as linear
u32 coarse_y = input_y & ~7;
u32 stride = config.input_width * src_bytes_per_pixel;
src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) +
coarse_y * stride;
dst_offset = (x + output_y * output_width) * dst_bytes_per_pixel;
} else {
// Both input and output are tiled
u32 out_coarse_y = output_y & ~7;
u32 out_stride = output_width * dst_bytes_per_pixel;
u32 in_coarse_y = input_y & ~7;
u32 in_stride = config.input_width * src_bytes_per_pixel;
src_offset = VideoCore::GetMortonOffset(input_x, input_y, src_bytes_per_pixel) +
in_coarse_y * in_stride;
dst_offset = VideoCore::GetMortonOffset(x, output_y, dst_bytes_per_pixel) +
out_coarse_y * out_stride;
}
}
const u8* src_pixel = src_pointer + src_offset;
src_color = DecodePixel(config.input_format, src_pixel);
if (config.scaling == config.ScaleX) {
Math::Vec4<u8> pixel =
DecodePixel(config.input_format, src_pixel + src_bytes_per_pixel);
src_color = ((src_color + pixel) / 2).Cast<u8>();
} else if (config.scaling == config.ScaleXY) {
Math::Vec4<u8> pixel1 =
DecodePixel(config.input_format, src_pixel + 1 * src_bytes_per_pixel);
Math::Vec4<u8> pixel2 =
DecodePixel(config.input_format, src_pixel + 2 * src_bytes_per_pixel);
Math::Vec4<u8> pixel3 =
DecodePixel(config.input_format, src_pixel + 3 * src_bytes_per_pixel);
src_color = (((src_color + pixel1) + (pixel2 + pixel3)) / 4).Cast<u8>();
}
u8* dst_pixel = dst_pointer + dst_offset;
switch (config.output_format) {
case Regs::PixelFormat::RGBA8:
Color::EncodeRGBA8(src_color, dst_pixel);
break;
case Regs::PixelFormat::RGB8:
Color::EncodeRGB8(src_color, dst_pixel);
break;
case Regs::PixelFormat::RGB565:
Color::EncodeRGB565(src_color, dst_pixel);
break;
case Regs::PixelFormat::RGB5A1:
Color::EncodeRGB5A1(src_color, dst_pixel);
break;
case Regs::PixelFormat::RGBA4:
Color::EncodeRGBA4(src_color, dst_pixel);
break;
default:
LOG_ERROR(HW_GPU, "Unknown destination framebuffer format %x",
config.output_format.Value());
break;
}
}
}
}
static void TextureCopy(const Regs::DisplayTransferConfig& config) {
const PAddr src_addr = config.GetPhysicalInputAddress();
const PAddr dst_addr = config.GetPhysicalOutputAddress();
// TODO: do hwtest with invalid addresses
if (!Memory::IsValidPhysicalAddress(src_addr)) {
LOG_CRITICAL(HW_GPU, "invalid input address 0x%08X", src_addr);
return;
}
if (!Memory::IsValidPhysicalAddress(dst_addr)) {
LOG_CRITICAL(HW_GPU, "invalid output address 0x%08X", dst_addr);
return;
}
if (VideoCore::g_renderer->Rasterizer()->AccelerateTextureCopy(config))
return;
u8* src_pointer = Memory::GetPhysicalPointer(src_addr);
u8* dst_pointer = Memory::GetPhysicalPointer(dst_addr);
u32 remaining_size = Common::AlignDown(config.texture_copy.size, 16);
if (remaining_size == 0) {
LOG_CRITICAL(HW_GPU, "zero size. Real hardware freezes on this.");
return;
}
u32 input_gap = config.texture_copy.input_gap * 16;
u32 output_gap = config.texture_copy.output_gap * 16;
// Zero gap means contiguous input/output even if width = 0. To avoid infinite loop below, width
// is assigned with the total size if gap = 0.
u32 input_width = input_gap == 0 ? remaining_size : config.texture_copy.input_width * 16;
u32 output_width = output_gap == 0 ? remaining_size : config.texture_copy.output_width * 16;
if (input_width == 0) {
LOG_CRITICAL(HW_GPU, "zero input width. Real hardware freezes on this.");
return;
}
if (output_width == 0) {
LOG_CRITICAL(HW_GPU, "zero output width. Real hardware freezes on this.");
return;
}
size_t contiguous_input_size =
config.texture_copy.size / input_width * (input_width + input_gap);
Memory::RasterizerFlushRegion(config.GetPhysicalInputAddress(),
static_cast<u32>(contiguous_input_size));
size_t contiguous_output_size =
config.texture_copy.size / output_width * (output_width + output_gap);
Memory::RasterizerFlushAndInvalidateRegion(config.GetPhysicalOutputAddress(),
static_cast<u32>(contiguous_output_size));
u32 remaining_input = input_width;
u32 remaining_output = output_width;
while (remaining_size > 0) {
u32 copy_size = std::min({remaining_input, remaining_output, remaining_size});
std::memcpy(dst_pointer, src_pointer, copy_size);
src_pointer += copy_size;
dst_pointer += copy_size;
remaining_input -= copy_size;
remaining_output -= copy_size;
remaining_size -= copy_size;
if (remaining_input == 0) {
remaining_input = input_width;
src_pointer += input_gap;
}
if (remaining_output == 0) {
remaining_output = output_width;
dst_pointer += output_gap;
}
}
}
template <typename T>
inline void Write(u32 addr, const T data) {
addr -= HW::VADDR_GPU;
u32 index = addr / 4;
// Writes other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds() || !std::is_same<T, u32>::value) {
LOG_ERROR(HW_GPU, "unknown Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, addr);
return;
}
g_regs[index] = static_cast<u32>(data);
switch (index) {
// Memory fills are triggered once the fill value is written.
case GPU_REG_INDEX_WORKAROUND(memory_fill_config[0].trigger, 0x00004 + 0x3):
case GPU_REG_INDEX_WORKAROUND(memory_fill_config[1].trigger, 0x00008 + 0x3): {
const bool is_second_filler = (index != GPU_REG_INDEX(memory_fill_config[0].trigger));
auto& config = g_regs.memory_fill_config[is_second_filler];
if (config.trigger) {
MemoryFill(config);
LOG_TRACE(HW_GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(),
config.GetEndAddress());
// It seems that it won't signal interrupt if "address_start" is zero.
// TODO: hwtest this
if (config.GetStartAddress() != 0) {
if (!is_second_filler) {
//Service::GSP::SignalInterrupt(Service::GSP::InterruptId::PSC0);
} else {
//Service::GSP::SignalInterrupt(Service::GSP::InterruptId::PSC1);
}
}
// Reset "trigger" flag and set the "finish" flag
// NOTE: This was confirmed to happen on hardware even if "address_start" is zero.
config.trigger.Assign(0);
config.finished.Assign(1);
}
break;
}
case GPU_REG_INDEX(display_transfer_config.trigger): {
MICROPROFILE_SCOPE(GPU_DisplayTransfer);
const auto& config = g_regs.display_transfer_config;
if (config.trigger & 1) {
if (Pica::g_debug_context)
Pica::g_debug_context->OnEvent(Pica::DebugContext::Event::IncomingDisplayTransfer,
nullptr);
if (config.is_texture_copy) {
TextureCopy(config);
LOG_TRACE(HW_GPU, "TextureCopy: 0x%X bytes from 0x%08X(%u+%u)-> "
"0x%08X(%u+%u), flags 0x%08X",
config.texture_copy.size, config.GetPhysicalInputAddress(),
config.texture_copy.input_width * 16, config.texture_copy.input_gap * 16,
config.GetPhysicalOutputAddress(), config.texture_copy.output_width * 16,
config.texture_copy.output_gap * 16, config.flags);
} else {
DisplayTransfer(config);
LOG_TRACE(HW_GPU, "DisplayTransfer: 0x%08x(%ux%u)-> "
"0x%08x(%ux%u), dst format %x, flags 0x%08X",
config.GetPhysicalInputAddress(), config.input_width.Value(),
config.input_height.Value(), config.GetPhysicalOutputAddress(),
config.output_width.Value(), config.output_height.Value(),
config.output_format.Value(), config.flags);
}
g_regs.display_transfer_config.trigger = 0;
//Service::GSP::SignalInterrupt(Service::GSP::InterruptId::PPF);
}
break;
}
// Seems like writing to this register triggers processing
case GPU_REG_INDEX(command_processor_config.trigger): {
const auto& config = g_regs.command_processor_config;
if (config.trigger & 1) {
MICROPROFILE_SCOPE(GPU_CmdlistProcessing);
u32* buffer = (u32*)Memory::GetPhysicalPointer(config.GetPhysicalAddress());
if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
Pica::g_debug_context->recorder->MemoryAccessed((u8*)buffer, config.size,
config.GetPhysicalAddress());
}
Pica::CommandProcessor::ProcessCommandList(buffer, config.size);
g_regs.command_processor_config.trigger = 0;
}
break;
}
default:
break;
}
// Notify tracer about the register write
// This is happening *after* handling the write to make sure we properly catch all memory reads.
if (Pica::g_debug_context && Pica::g_debug_context->recorder) {
// addr + GPU VBase - IO VBase + IO PBase
Pica::g_debug_context->recorder->RegisterWritten<T>(
addr + 0x1EF00000 - 0x1EC00000 + 0x10100000, data);
}
}
// Explicitly instantiate template functions because we aren't defining this in the header:
template void Read<u64>(u64& var, const u32 addr);
template void Read<u32>(u32& var, const u32 addr);
template void Read<u16>(u16& var, const u32 addr);
template void Read<u8>(u8& var, const u32 addr);
template void Write<u64>(u32 addr, const u64 data);
template void Write<u32>(u32 addr, const u32 data);
template void Write<u16>(u32 addr, const u16 data);
template void Write<u8>(u32 addr, const u8 data);
/// Update hardware
static void VBlankCallback(u64 userdata, int cycles_late) {
//VideoCore::g_renderer->SwapBuffers();
//// Signal to GSP that GPU interrupt has occurred
//// TODO(yuriks): hwtest to determine if PDC0 is for the Top screen and PDC1 for the Sub
//// screen, or if both use the same interrupts and these two instead determine the
//// beginning and end of the VBlank period. If needed, split the interrupt firing into
//// two different intervals.
//Service::GSP::SignalInterrupt(Service::GSP::InterruptId::PDC0);
//Service::GSP::SignalInterrupt(Service::GSP::InterruptId::PDC1);
// Reschedule recurrent event
CoreTiming::ScheduleEvent(frame_ticks - cycles_late, vblank_event);
}
/// Initialize hardware
void Init() {
memset(&g_regs, 0, sizeof(g_regs));
auto& framebuffer_top = g_regs.framebuffer_config[0];
auto& framebuffer_sub = g_regs.framebuffer_config[1];
// Setup default framebuffer addresses (located in VRAM)
// .. or at least these are the ones used by system applets.
// There's probably a smarter way to come up with addresses
// like this which does not require hardcoding.
framebuffer_top.address_left1 = 0x181E6000;
framebuffer_top.address_left2 = 0x1822C800;
framebuffer_top.address_right1 = 0x18273000;
framebuffer_top.address_right2 = 0x182B9800;
framebuffer_sub.address_left1 = 0x1848F000;
framebuffer_sub.address_left2 = 0x184C7800;
framebuffer_top.width.Assign(240);
framebuffer_top.height.Assign(400);
framebuffer_top.stride = 3 * 240;
framebuffer_top.color_format.Assign(Regs::PixelFormat::RGB8);
framebuffer_top.active_fb = 0;
framebuffer_sub.width.Assign(240);
framebuffer_sub.height.Assign(320);
framebuffer_sub.stride = 3 * 240;
framebuffer_sub.color_format.Assign(Regs::PixelFormat::RGB8);
framebuffer_sub.active_fb = 0;
vblank_event = CoreTiming::RegisterEvent("GPU::VBlankCallback", VBlankCallback);
CoreTiming::ScheduleEvent(frame_ticks, vblank_event);
LOG_DEBUG(HW_GPU, "initialized OK");
}
/// Shutdown hardware
void Shutdown() {
LOG_DEBUG(HW_GPU, "shutdown OK");
}
} // namespace