diff options
Diffstat (limited to 'src/video_core/swrasterizer/rasterizer.cpp')
-rw-r--r-- | src/video_core/swrasterizer/rasterizer.cpp | 853 |
1 files changed, 0 insertions, 853 deletions
diff --git a/src/video_core/swrasterizer/rasterizer.cpp b/src/video_core/swrasterizer/rasterizer.cpp deleted file mode 100644 index 862135614..000000000 --- a/src/video_core/swrasterizer/rasterizer.cpp +++ /dev/null @@ -1,853 +0,0 @@ -// Copyright 2014 Citra Emulator Project -// Licensed under GPLv2 or any later version -// Refer to the license.txt file included. - -#include <algorithm> -#include <array> -#include <cmath> -#include <tuple> -#include "common/assert.h" -#include "common/bit_field.h" -#include "common/color.h" -#include "common/common_types.h" -#include "common/logging/log.h" -#include "common/math_util.h" -#include "common/microprofile.h" -#include "common/quaternion.h" -#include "common/vector_math.h" -#include "core/hw/gpu.h" -#include "core/memory.h" -#include "video_core/debug_utils/debug_utils.h" -#include "video_core/pica_state.h" -#include "video_core/pica_types.h" -#include "video_core/regs_framebuffer.h" -#include "video_core/regs_rasterizer.h" -#include "video_core/regs_texturing.h" -#include "video_core/shader/shader.h" -#include "video_core/swrasterizer/framebuffer.h" -#include "video_core/swrasterizer/lighting.h" -#include "video_core/swrasterizer/proctex.h" -#include "video_core/swrasterizer/rasterizer.h" -#include "video_core/swrasterizer/texturing.h" -#include "video_core/texture/texture_decode.h" -#include "video_core/utils.h" - -namespace Pica { -namespace Rasterizer { - -// NOTE: Assuming that rasterizer coordinates are 12.4 fixed-point values -struct Fix12P4 { - Fix12P4() {} - Fix12P4(u16 val) : val(val) {} - - static u16 FracMask() { - return 0xF; - } - static u16 IntMask() { - return (u16)~0xF; - } - - operator u16() const { - return val; - } - - bool operator<(const Fix12P4& oth) const { - return (u16) * this < (u16)oth; - } - -private: - u16 val; -}; - -/** - * Calculate signed area of the triangle spanned by the three argument vertices. - * The sign denotes an orientation. - * - * @todo define orientation concretely. - */ -static int SignedArea(const Math::Vec2<Fix12P4>& vtx1, const Math::Vec2<Fix12P4>& vtx2, - const Math::Vec2<Fix12P4>& vtx3) { - const auto vec1 = Math::MakeVec(vtx2 - vtx1, 0); - const auto vec2 = Math::MakeVec(vtx3 - vtx1, 0); - // TODO: There is a very small chance this will overflow for sizeof(int) == 4 - return Math::Cross(vec1, vec2).z; -}; - -/// Convert a 3D vector for cube map coordinates to 2D texture coordinates along with the face name -static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v, float24 w, - const TexturingRegs& regs) { - const float abs_u = std::abs(u.ToFloat32()); - const float abs_v = std::abs(v.ToFloat32()); - const float abs_w = std::abs(w.ToFloat32()); - float24 x, y, z; - PAddr addr; - if (abs_u > abs_v && abs_u > abs_w) { - if (u > float24::FromFloat32(0)) { - addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveX); - y = -v; - } else { - addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeX); - y = v; - } - x = -w; - z = u; - } else if (abs_v > abs_w) { - if (v > float24::FromFloat32(0)) { - addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveY); - x = u; - } else { - addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeY); - x = -u; - } - y = w; - z = v; - } else { - if (w > float24::FromFloat32(0)) { - addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::PositiveZ); - y = -v; - } else { - addr = regs.GetCubePhysicalAddress(TexturingRegs::CubeFace::NegativeZ); - y = v; - } - x = u; - z = w; - } - const float24 half = float24::FromFloat32(0.5f); - return std::make_tuple(x / z * half + half, y / z * half + half, addr); -} - -MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240)); - -/** - * Helper function for ProcessTriangle with the "reversed" flag to allow for implementing - * culling via recursion. - */ -static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Vertex& v2, - bool reversed = false) { - const auto& regs = g_state.regs; - MICROPROFILE_SCOPE(GPU_Rasterization); - - // vertex positions in rasterizer coordinates - static auto FloatToFix = [](float24 flt) { - // TODO: Rounding here is necessary to prevent garbage pixels at - // triangle borders. Is it that the correct solution, though? - return Fix12P4(static_cast<unsigned short>(round(flt.ToFloat32() * 16.0f))); - }; - static auto ScreenToRasterizerCoordinates = [](const Math::Vec3<float24>& vec) { - return Math::Vec3<Fix12P4>{FloatToFix(vec.x), FloatToFix(vec.y), FloatToFix(vec.z)}; - }; - - Math::Vec3<Fix12P4> vtxpos[3]{ScreenToRasterizerCoordinates(v0.screenpos), - ScreenToRasterizerCoordinates(v1.screenpos), - ScreenToRasterizerCoordinates(v2.screenpos)}; - - if (regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepAll) { - // Make sure we always end up with a triangle wound counter-clockwise - if (!reversed && SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) { - ProcessTriangleInternal(v0, v2, v1, true); - return; - } - } else { - if (!reversed && regs.rasterizer.cull_mode == RasterizerRegs::CullMode::KeepClockWise) { - // Reverse vertex order and use the CCW code path. - ProcessTriangleInternal(v0, v2, v1, true); - return; - } - - // Cull away triangles which are wound clockwise. - if (SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) <= 0) - return; - } - - u16 min_x = std::min({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); - u16 min_y = std::min({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); - u16 max_x = std::max({vtxpos[0].x, vtxpos[1].x, vtxpos[2].x}); - u16 max_y = std::max({vtxpos[0].y, vtxpos[1].y, vtxpos[2].y}); - - // Convert the scissor box coordinates to 12.4 fixed point - u16 scissor_x1 = (u16)(regs.rasterizer.scissor_test.x1 << 4); - u16 scissor_y1 = (u16)(regs.rasterizer.scissor_test.y1 << 4); - // x2,y2 have +1 added to cover the entire sub-pixel area - u16 scissor_x2 = (u16)((regs.rasterizer.scissor_test.x2 + 1) << 4); - u16 scissor_y2 = (u16)((regs.rasterizer.scissor_test.y2 + 1) << 4); - - if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Include) { - // Calculate the new bounds - min_x = std::max(min_x, scissor_x1); - min_y = std::max(min_y, scissor_y1); - max_x = std::min(max_x, scissor_x2); - max_y = std::min(max_y, scissor_y2); - } - - min_x &= Fix12P4::IntMask(); - min_y &= Fix12P4::IntMask(); - max_x = ((max_x + Fix12P4::FracMask()) & Fix12P4::IntMask()); - max_y = ((max_y + Fix12P4::FracMask()) & Fix12P4::IntMask()); - - // Triangle filling rules: Pixels on the right-sided edge or on flat bottom edges are not - // drawn. Pixels on any other triangle border are drawn. This is implemented with three bias - // values which are added to the barycentric coordinates w0, w1 and w2, respectively. - // NOTE: These are the PSP filling rules. Not sure if the 3DS uses the same ones... - auto IsRightSideOrFlatBottomEdge = [](const Math::Vec2<Fix12P4>& vtx, - const Math::Vec2<Fix12P4>& line1, - const Math::Vec2<Fix12P4>& line2) { - if (line1.y == line2.y) { - // just check if vertex is above us => bottom line parallel to x-axis - return vtx.y < line1.y; - } else { - // check if vertex is on our left => right side - // TODO: Not sure how likely this is to overflow - return (int)vtx.x < (int)line1.x + - ((int)line2.x - (int)line1.x) * ((int)vtx.y - (int)line1.y) / - ((int)line2.y - (int)line1.y); - } - }; - int bias0 = - IsRightSideOrFlatBottomEdge(vtxpos[0].xy(), vtxpos[1].xy(), vtxpos[2].xy()) ? -1 : 0; - int bias1 = - IsRightSideOrFlatBottomEdge(vtxpos[1].xy(), vtxpos[2].xy(), vtxpos[0].xy()) ? -1 : 0; - int bias2 = - IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0; - - auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w); - - auto textures = regs.texturing.GetTextures(); - auto tev_stages = regs.texturing.GetTevStages(); - - bool stencil_action_enable = - g_state.regs.framebuffer.output_merger.stencil_test.enable && - g_state.regs.framebuffer.framebuffer.depth_format == FramebufferRegs::DepthFormat::D24S8; - const auto stencil_test = g_state.regs.framebuffer.output_merger.stencil_test; - - // Enter rasterization loop, starting at the center of the topleft bounding box corner. - // TODO: Not sure if looping through x first might be faster - for (u16 y = min_y + 8; y < max_y; y += 0x10) { - for (u16 x = min_x + 8; x < max_x; x += 0x10) { - - // Do not process the pixel if it's inside the scissor box and the scissor mode is set - // to Exclude - if (regs.rasterizer.scissor_test.mode == RasterizerRegs::ScissorMode::Exclude) { - if (x >= scissor_x1 && x < scissor_x2 && y >= scissor_y1 && y < scissor_y2) - continue; - } - - // Calculate the barycentric coordinates w0, w1 and w2 - int w0 = bias0 + SignedArea(vtxpos[1].xy(), vtxpos[2].xy(), {x, y}); - int w1 = bias1 + SignedArea(vtxpos[2].xy(), vtxpos[0].xy(), {x, y}); - int w2 = bias2 + SignedArea(vtxpos[0].xy(), vtxpos[1].xy(), {x, y}); - int wsum = w0 + w1 + w2; - - // If current pixel is not covered by the current primitive - if (w0 < 0 || w1 < 0 || w2 < 0) - continue; - - auto baricentric_coordinates = - Math::MakeVec(float24::FromFloat32(static_cast<float>(w0)), - float24::FromFloat32(static_cast<float>(w1)), - float24::FromFloat32(static_cast<float>(w2))); - float24 interpolated_w_inverse = - float24::FromFloat32(1.0f) / Math::Dot(w_inverse, baricentric_coordinates); - - // interpolated_z = z / w - float interpolated_z_over_w = - (v0.screenpos[2].ToFloat32() * w0 + v1.screenpos[2].ToFloat32() * w1 + - v2.screenpos[2].ToFloat32() * w2) / - wsum; - - // Not fully accurate. About 3 bits in precision are missing. - // Z-Buffer (z / w * scale + offset) - float depth_scale = float24::FromRaw(regs.rasterizer.viewport_depth_range).ToFloat32(); - float depth_offset = - float24::FromRaw(regs.rasterizer.viewport_depth_near_plane).ToFloat32(); - float depth = interpolated_z_over_w * depth_scale + depth_offset; - - // Potentially switch to W-Buffer - if (regs.rasterizer.depthmap_enable == - Pica::RasterizerRegs::DepthBuffering::WBuffering) { - // W-Buffer (z * scale + w * offset = (z / w * scale + offset) * w) - depth *= interpolated_w_inverse.ToFloat32() * wsum; - } - - // Clamp the result - depth = MathUtil::Clamp(depth, 0.0f, 1.0f); - - // Perspective correct attribute interpolation: - // Attribute values cannot be calculated by simple linear interpolation since - // they are not linear in screen space. For example, when interpolating a - // texture coordinate across two vertices, something simple like - // u = (u0*w0 + u1*w1)/(w0+w1) - // will not work. However, the attribute value divided by the - // clipspace w-coordinate (u/w) and and the inverse w-coordinate (1/w) are linear - // in screenspace. Hence, we can linearly interpolate these two independently and - // calculate the interpolated attribute by dividing the results. - // I.e. - // u_over_w = ((u0/v0.pos.w)*w0 + (u1/v1.pos.w)*w1)/(w0+w1) - // one_over_w = (( 1/v0.pos.w)*w0 + ( 1/v1.pos.w)*w1)/(w0+w1) - // u = u_over_w / one_over_w - // - // The generalization to three vertices is straightforward in baricentric coordinates. - auto GetInterpolatedAttribute = [&](float24 attr0, float24 attr1, float24 attr2) { - auto attr_over_w = Math::MakeVec(attr0, attr1, attr2); - float24 interpolated_attr_over_w = Math::Dot(attr_over_w, baricentric_coordinates); - return interpolated_attr_over_w * interpolated_w_inverse; - }; - - Math::Vec4<u8> primary_color{ - (u8)( - GetInterpolatedAttribute(v0.color.r(), v1.color.r(), v2.color.r()).ToFloat32() * - 255), - (u8)( - GetInterpolatedAttribute(v0.color.g(), v1.color.g(), v2.color.g()).ToFloat32() * - 255), - (u8)( - GetInterpolatedAttribute(v0.color.b(), v1.color.b(), v2.color.b()).ToFloat32() * - 255), - (u8)( - GetInterpolatedAttribute(v0.color.a(), v1.color.a(), v2.color.a()).ToFloat32() * - 255), - }; - - Math::Vec2<float24> uv[3]; - uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u()); - uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v()); - uv[1].u() = GetInterpolatedAttribute(v0.tc1.u(), v1.tc1.u(), v2.tc1.u()); - uv[1].v() = GetInterpolatedAttribute(v0.tc1.v(), v1.tc1.v(), v2.tc1.v()); - uv[2].u() = GetInterpolatedAttribute(v0.tc2.u(), v1.tc2.u(), v2.tc2.u()); - uv[2].v() = GetInterpolatedAttribute(v0.tc2.v(), v1.tc2.v(), v2.tc2.v()); - - Math::Vec4<u8> texture_color[4]{}; - for (int i = 0; i < 3; ++i) { - const auto& texture = textures[i]; - if (!texture.enabled) - continue; - - DEBUG_ASSERT(0 != texture.config.address); - - int coordinate_i = - (i == 2 && regs.texturing.main_config.texture2_use_coord1) ? 1 : i; - float24 u = uv[coordinate_i].u(); - float24 v = uv[coordinate_i].v(); - - // Only unit 0 respects the texturing type (according to 3DBrew) - // TODO: Refactor so cubemaps and shadowmaps can be handled - PAddr texture_address = texture.config.GetPhysicalAddress(); - if (i == 0) { - switch (texture.config.type) { - case TexturingRegs::TextureConfig::Texture2D: - break; - case TexturingRegs::TextureConfig::TextureCube: { - auto w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); - std::tie(u, v, texture_address) = ConvertCubeCoord(u, v, w, regs.texturing); - break; - } - case TexturingRegs::TextureConfig::Projection2D: { - auto tc0_w = GetInterpolatedAttribute(v0.tc0_w, v1.tc0_w, v2.tc0_w); - u /= tc0_w; - v /= tc0_w; - break; - } - default: - // TODO: Change to LOG_ERROR when more types are handled. - LOG_DEBUG(HW_GPU, "Unhandled texture type %x", (int)texture.config.type); - UNIMPLEMENTED(); - break; - } - } - - int s = (int)(u * float24::FromFloat32(static_cast<float>(texture.config.width))) - .ToFloat32(); - int t = (int)(v * float24::FromFloat32(static_cast<float>(texture.config.height))) - .ToFloat32(); - - bool use_border_s = false; - bool use_border_t = false; - - if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder) { - use_border_s = s < 0 || s >= static_cast<int>(texture.config.width); - } else if (texture.config.wrap_s == TexturingRegs::TextureConfig::ClampToBorder2) { - use_border_s = s >= static_cast<int>(texture.config.width); - } - - if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder) { - use_border_t = t < 0 || t >= static_cast<int>(texture.config.height); - } else if (texture.config.wrap_t == TexturingRegs::TextureConfig::ClampToBorder2) { - use_border_t = t >= static_cast<int>(texture.config.height); - } - - if (use_border_s || use_border_t) { - auto border_color = texture.config.border_color; - texture_color[i] = {border_color.r, border_color.g, border_color.b, - border_color.a}; - } else { - // Textures are laid out from bottom to top, hence we invert the t coordinate. - // NOTE: This may not be the right place for the inversion. - // TODO: Check if this applies to ETC textures, too. - s = GetWrappedTexCoord(texture.config.wrap_s, s, texture.config.width); - t = texture.config.height - 1 - - GetWrappedTexCoord(texture.config.wrap_t, t, texture.config.height); - - const u8* texture_data = Memory::GetPhysicalPointer(texture_address); - auto info = - Texture::TextureInfo::FromPicaRegister(texture.config, texture.format); - - // TODO: Apply the min and mag filters to the texture - texture_color[i] = Texture::LookupTexture(texture_data, s, t, info); -#if PICA_DUMP_TEXTURES - DebugUtils::DumpTexture(texture.config, texture_data); -#endif - } - } - - // sample procedural texture - if (regs.texturing.main_config.texture3_enable) { - const auto& proctex_uv = uv[regs.texturing.main_config.texture3_coordinates]; - texture_color[3] = ProcTex(proctex_uv.u().ToFloat32(), proctex_uv.v().ToFloat32(), - g_state.regs.texturing, g_state.proctex); - } - - // Texture environment - consists of 6 stages of color and alpha combining. - // - // Color combiners take three input color values from some source (e.g. interpolated - // vertex color, texture color, previous stage, etc), perform some very simple - // operations on each of them (e.g. inversion) and then calculate the output color - // with some basic arithmetic. Alpha combiners can be configured separately but work - // analogously. - Math::Vec4<u8> combiner_output; - Math::Vec4<u8> combiner_buffer = {0, 0, 0, 0}; - Math::Vec4<u8> next_combiner_buffer = { - regs.texturing.tev_combiner_buffer_color.r, - regs.texturing.tev_combiner_buffer_color.g, - regs.texturing.tev_combiner_buffer_color.b, - regs.texturing.tev_combiner_buffer_color.a, - }; - - Math::Vec4<u8> primary_fragment_color = {0, 0, 0, 0}; - Math::Vec4<u8> secondary_fragment_color = {0, 0, 0, 0}; - - if (!g_state.regs.lighting.disable) { - Math::Quaternion<float> normquat = Math::Quaternion<float>{ - {GetInterpolatedAttribute(v0.quat.x, v1.quat.x, v2.quat.x).ToFloat32(), - GetInterpolatedAttribute(v0.quat.y, v1.quat.y, v2.quat.y).ToFloat32(), - GetInterpolatedAttribute(v0.quat.z, v1.quat.z, v2.quat.z).ToFloat32()}, - GetInterpolatedAttribute(v0.quat.w, v1.quat.w, v2.quat.w).ToFloat32(), - }.Normalized(); - - Math::Vec3<float> view{ - GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(), - GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(), - GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32(), - }; - std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors( - g_state.regs.lighting, g_state.lighting, normquat, view, texture_color); - } - - for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size(); - ++tev_stage_index) { - const auto& tev_stage = tev_stages[tev_stage_index]; - using Source = TexturingRegs::TevStageConfig::Source; - - auto GetSource = [&](Source source) -> Math::Vec4<u8> { - switch (source) { - case Source::PrimaryColor: - return primary_color; - - case Source::PrimaryFragmentColor: - return primary_fragment_color; - - case Source::SecondaryFragmentColor: - return secondary_fragment_color; - - case Source::Texture0: - return texture_color[0]; - - case Source::Texture1: - return texture_color[1]; - - case Source::Texture2: - return texture_color[2]; - - case Source::Texture3: - return texture_color[3]; - - case Source::PreviousBuffer: - return combiner_buffer; - - case Source::Constant: - return {tev_stage.const_r, tev_stage.const_g, tev_stage.const_b, - tev_stage.const_a}; - - case Source::Previous: - return combiner_output; - - default: - LOG_ERROR(HW_GPU, "Unknown color combiner source %d", (int)source); - UNIMPLEMENTED(); - return {0, 0, 0, 0}; - } - }; - - // color combiner - // NOTE: Not sure if the alpha combiner might use the color output of the previous - // stage as input. Hence, we currently don't directly write the result to - // combiner_output.rgb(), but instead store it in a temporary variable until - // alpha combining has been done. - Math::Vec3<u8> color_result[3] = { - GetColorModifier(tev_stage.color_modifier1, GetSource(tev_stage.color_source1)), - GetColorModifier(tev_stage.color_modifier2, GetSource(tev_stage.color_source2)), - GetColorModifier(tev_stage.color_modifier3, GetSource(tev_stage.color_source3)), - }; - auto color_output = ColorCombine(tev_stage.color_op, color_result); - - u8 alpha_output; - if (tev_stage.color_op == TexturingRegs::TevStageConfig::Operation::Dot3_RGBA) { - // result of Dot3_RGBA operation is also placed to the alpha component - alpha_output = color_output.x; - } else { - // alpha combiner - std::array<u8, 3> alpha_result = {{ - GetAlphaModifier(tev_stage.alpha_modifier1, - GetSource(tev_stage.alpha_source1)), - GetAlphaModifier(tev_stage.alpha_modifier2, - GetSource(tev_stage.alpha_source2)), - GetAlphaModifier(tev_stage.alpha_modifier3, - GetSource(tev_stage.alpha_source3)), - }}; - alpha_output = AlphaCombine(tev_stage.alpha_op, alpha_result); - } - - combiner_output[0] = - std::min((unsigned)255, color_output.r() * tev_stage.GetColorMultiplier()); - combiner_output[1] = - std::min((unsigned)255, color_output.g() * tev_stage.GetColorMultiplier()); - combiner_output[2] = - std::min((unsigned)255, color_output.b() * tev_stage.GetColorMultiplier()); - combiner_output[3] = - std::min((unsigned)255, alpha_output * tev_stage.GetAlphaMultiplier()); - - combiner_buffer = next_combiner_buffer; - - if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferColor( - tev_stage_index)) { - next_combiner_buffer.r() = combiner_output.r(); - next_combiner_buffer.g() = combiner_output.g(); - next_combiner_buffer.b() = combiner_output.b(); - } - - if (regs.texturing.tev_combiner_buffer_input.TevStageUpdatesCombinerBufferAlpha( - tev_stage_index)) { - next_combiner_buffer.a() = combiner_output.a(); - } - } - - const auto& output_merger = regs.framebuffer.output_merger; - // TODO: Does alpha testing happen before or after stencil? - if (output_merger.alpha_test.enable) { - bool pass = false; - - switch (output_merger.alpha_test.func) { - case FramebufferRegs::CompareFunc::Never: - pass = false; - break; - - case FramebufferRegs::CompareFunc::Always: - pass = true; - break; - - case FramebufferRegs::CompareFunc::Equal: - pass = combiner_output.a() == output_merger.alpha_test.ref; - break; - - case FramebufferRegs::CompareFunc::NotEqual: - pass = combiner_output.a() != output_merger.alpha_test.ref; - break; - - case FramebufferRegs::CompareFunc::LessThan: - pass = combiner_output.a() < output_merger.alpha_test.ref; - break; - - case FramebufferRegs::CompareFunc::LessThanOrEqual: - pass = combiner_output.a() <= output_merger.alpha_test.ref; - break; - - case FramebufferRegs::CompareFunc::GreaterThan: - pass = combiner_output.a() > output_merger.alpha_test.ref; - break; - - case FramebufferRegs::CompareFunc::GreaterThanOrEqual: - pass = combiner_output.a() >= output_merger.alpha_test.ref; - break; - } - - if (!pass) - continue; - } - - // Apply fog combiner - // Not fully accurate. We'd have to know what data type is used to - // store the depth etc. Using float for now until we know more - // about Pica datatypes - if (regs.texturing.fog_mode == TexturingRegs::FogMode::Fog) { - const Math::Vec3<u8> fog_color = { - static_cast<u8>(regs.texturing.fog_color.r.Value()), - static_cast<u8>(regs.texturing.fog_color.g.Value()), - static_cast<u8>(regs.texturing.fog_color.b.Value()), - }; - - // Get index into fog LUT - float fog_index; - if (g_state.regs.texturing.fog_flip) { - fog_index = (1.0f - depth) * 128.0f; - } else { - fog_index = depth * 128.0f; - } - - // Generate clamped fog factor from LUT for given fog index - float fog_i = MathUtil::Clamp(floorf(fog_index), 0.0f, 127.0f); - float fog_f = fog_index - fog_i; - const auto& fog_lut_entry = g_state.fog.lut[static_cast<unsigned int>(fog_i)]; - float fog_factor = fog_lut_entry.ToFloat() + fog_lut_entry.DiffToFloat() * fog_f; - fog_factor = MathUtil::Clamp(fog_factor, 0.0f, 1.0f); - - // Blend the fog - for (unsigned i = 0; i < 3; i++) { - combiner_output[i] = static_cast<u8>(fog_factor * combiner_output[i] + - (1.0f - fog_factor) * fog_color[i]); - } - } - - u8 old_stencil = 0; - - auto UpdateStencil = [stencil_test, x, y, - &old_stencil](Pica::FramebufferRegs::StencilAction action) { - u8 new_stencil = - PerformStencilAction(action, old_stencil, stencil_test.reference_value); - if (g_state.regs.framebuffer.framebuffer.allow_depth_stencil_write != 0) - SetStencil(x >> 4, y >> 4, (new_stencil & stencil_test.write_mask) | - (old_stencil & ~stencil_test.write_mask)); - }; - - if (stencil_action_enable) { - old_stencil = GetStencil(x >> 4, y >> 4); - u8 dest = old_stencil & stencil_test.input_mask; - u8 ref = stencil_test.reference_value & stencil_test.input_mask; - - bool pass = false; - switch (stencil_test.func) { - case FramebufferRegs::CompareFunc::Never: - pass = false; - break; - - case FramebufferRegs::CompareFunc::Always: - pass = true; - break; - - case FramebufferRegs::CompareFunc::Equal: - pass = (ref == dest); - break; - - case FramebufferRegs::CompareFunc::NotEqual: - pass = (ref != dest); - break; - - case FramebufferRegs::CompareFunc::LessThan: - pass = (ref < dest); - break; - - case FramebufferRegs::CompareFunc::LessThanOrEqual: - pass = (ref <= dest); - break; - - case FramebufferRegs::CompareFunc::GreaterThan: - pass = (ref > dest); - break; - - case FramebufferRegs::CompareFunc::GreaterThanOrEqual: - pass = (ref >= dest); - break; - } - - if (!pass) { - UpdateStencil(stencil_test.action_stencil_fail); - continue; - } - } - - // Convert float to integer - unsigned num_bits = - FramebufferRegs::DepthBitsPerPixel(regs.framebuffer.framebuffer.depth_format); - u32 z = (u32)(depth * ((1 << num_bits) - 1)); - - if (output_merger.depth_test_enable) { - u32 ref_z = GetDepth(x >> 4, y >> 4); - - bool pass = false; - - switch (output_merger.depth_test_func) { - case FramebufferRegs::CompareFunc::Never: - pass = false; - break; - - case FramebufferRegs::CompareFunc::Always: - pass = true; - break; - - case FramebufferRegs::CompareFunc::Equal: - pass = z == ref_z; - break; - - case FramebufferRegs::CompareFunc::NotEqual: - pass = z != ref_z; - break; - - case FramebufferRegs::CompareFunc::LessThan: - pass = z < ref_z; - break; - - case FramebufferRegs::CompareFunc::LessThanOrEqual: - pass = z <= ref_z; - break; - - case FramebufferRegs::CompareFunc::GreaterThan: - pass = z > ref_z; - break; - - case FramebufferRegs::CompareFunc::GreaterThanOrEqual: - pass = z >= ref_z; - break; - } - - if (!pass) { - if (stencil_action_enable) - UpdateStencil(stencil_test.action_depth_fail); - continue; - } - } - - if (regs.framebuffer.framebuffer.allow_depth_stencil_write != 0 && - output_merger.depth_write_enable) { - - SetDepth(x >> 4, y >> 4, z); - } - - // The stencil depth_pass action is executed even if depth testing is disabled - if (stencil_action_enable) - UpdateStencil(stencil_test.action_depth_pass); - - auto dest = GetPixel(x >> 4, y >> 4); - Math::Vec4<u8> blend_output = combiner_output; - - if (output_merger.alphablend_enable) { - auto params = output_merger.alpha_blending; - - auto LookupFactor = [&](unsigned channel, - FramebufferRegs::BlendFactor factor) -> u8 { - DEBUG_ASSERT(channel < 4); - - const Math::Vec4<u8> blend_const = { - static_cast<u8>(output_merger.blend_const.r), - static_cast<u8>(output_merger.blend_const.g), - static_cast<u8>(output_merger.blend_const.b), - static_cast<u8>(output_merger.blend_const.a), - }; - - switch (factor) { - case FramebufferRegs::BlendFactor::Zero: - return 0; - - case FramebufferRegs::BlendFactor::One: - return 255; - - case FramebufferRegs::BlendFactor::SourceColor: - return combiner_output[channel]; - - case FramebufferRegs::BlendFactor::OneMinusSourceColor: - return 255 - combiner_output[channel]; - - case FramebufferRegs::BlendFactor::DestColor: - return dest[channel]; - - case FramebufferRegs::BlendFactor::OneMinusDestColor: - return 255 - dest[channel]; - - case FramebufferRegs::BlendFactor::SourceAlpha: - return combiner_output.a(); - - case FramebufferRegs::BlendFactor::OneMinusSourceAlpha: - return 255 - combiner_output.a(); - - case FramebufferRegs::BlendFactor::DestAlpha: - return dest.a(); - - case FramebufferRegs::BlendFactor::OneMinusDestAlpha: - return 255 - dest.a(); - - case FramebufferRegs::BlendFactor::ConstantColor: - return blend_const[channel]; - - case FramebufferRegs::BlendFactor::OneMinusConstantColor: - return 255 - blend_const[channel]; - - case FramebufferRegs::BlendFactor::ConstantAlpha: - return blend_const.a(); - - case FramebufferRegs::BlendFactor::OneMinusConstantAlpha: - return 255 - blend_const.a(); - - case FramebufferRegs::BlendFactor::SourceAlphaSaturate: - // Returns 1.0 for the alpha channel - if (channel == 3) - return 255; - return std::min(combiner_output.a(), static_cast<u8>(255 - dest.a())); - - default: - LOG_CRITICAL(HW_GPU, "Unknown blend factor %x", factor); - UNIMPLEMENTED(); - break; - } - - return combiner_output[channel]; - }; - - auto srcfactor = Math::MakeVec(LookupFactor(0, params.factor_source_rgb), - LookupFactor(1, params.factor_source_rgb), - LookupFactor(2, params.factor_source_rgb), - LookupFactor(3, params.factor_source_a)); - - auto dstfactor = Math::MakeVec(LookupFactor(0, params.factor_dest_rgb), - LookupFactor(1, params.factor_dest_rgb), - LookupFactor(2, params.factor_dest_rgb), - LookupFactor(3, params.factor_dest_a)); - - blend_output = EvaluateBlendEquation(combiner_output, srcfactor, dest, dstfactor, - params.blend_equation_rgb); - blend_output.a() = EvaluateBlendEquation(combiner_output, srcfactor, dest, - dstfactor, params.blend_equation_a) - .a(); - } else { - blend_output = - Math::MakeVec(LogicOp(combiner_output.r(), dest.r(), output_merger.logic_op), - LogicOp(combiner_output.g(), dest.g(), output_merger.logic_op), - LogicOp(combiner_output.b(), dest.b(), output_merger.logic_op), - LogicOp(combiner_output.a(), dest.a(), output_merger.logic_op)); - } - - const Math::Vec4<u8> result = { - output_merger.red_enable ? blend_output.r() : dest.r(), - output_merger.green_enable ? blend_output.g() : dest.g(), - output_merger.blue_enable ? blend_output.b() : dest.b(), - output_merger.alpha_enable ? blend_output.a() : dest.a(), - }; - - if (regs.framebuffer.framebuffer.allow_color_write != 0) - DrawPixel(x >> 4, y >> 4, result); - } - } -} - -void ProcessTriangle(const Vertex& v0, const Vertex& v1, const Vertex& v2) { - ProcessTriangleInternal(v0, v1, v2); -} - -} // namespace Rasterizer - -} // namespace Pica |