1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
// Copyright 2021 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <span>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#include "shader_recompiler/backend/spirv/emit_spirv.h"
#include "shader_recompiler/frontend/ir/basic_block.h"
#include "shader_recompiler/frontend/ir/function.h"
#include "shader_recompiler/frontend/ir/microinstruction.h"
#include "shader_recompiler/frontend/ir/program.h"
namespace Shader::Backend::SPIRV {
namespace {
template <class Func>
struct FuncTraits : FuncTraits<Func> {};
template <class ReturnType_, class... Args>
struct FuncTraits<ReturnType_ (*)(Args...)> {
using ReturnType = ReturnType_;
static constexpr size_t NUM_ARGS = sizeof...(Args);
template <size_t I>
using ArgType = std::tuple_element_t<I, std::tuple<Args...>>;
};
template <auto func, typename... Args>
void SetDefinition(EmitContext& ctx, IR::Inst* inst, Args... args) {
const Id forward_id{inst->Definition<Id>()};
const bool has_forward_id{Sirit::ValidId(forward_id)};
Id current_id{};
if (has_forward_id) {
current_id = ctx.ExchangeCurrentId(forward_id);
}
const Id new_id{func(ctx, std::forward<Args>(args)...)};
if (has_forward_id) {
ctx.ExchangeCurrentId(current_id);
} else {
inst->SetDefinition<Id>(new_id);
}
}
template <typename ArgType>
ArgType Arg(EmitContext& ctx, const IR::Value& arg) {
if constexpr (std::is_same_v<ArgType, Id>) {
return ctx.Def(arg);
} else if constexpr (std::is_same_v<ArgType, const IR::Value&>) {
return arg;
} else if constexpr (std::is_same_v<ArgType, u32>) {
return arg.U32();
} else if constexpr (std::is_same_v<ArgType, IR::Block*>) {
return arg.Label();
}
}
template <auto func, bool is_first_arg_inst, size_t... I>
void Invoke(EmitContext& ctx, IR::Inst* inst, std::index_sequence<I...>) {
using Traits = FuncTraits<decltype(func)>;
if constexpr (std::is_same_v<Traits::ReturnType, Id>) {
if constexpr (is_first_arg_inst) {
SetDefinition<func>(ctx, inst, inst, Arg<Traits::ArgType<I + 2>>(ctx, inst->Arg(I))...);
} else {
SetDefinition<func>(ctx, inst, Arg<Traits::ArgType<I + 1>>(ctx, inst->Arg(I))...);
}
} else {
if constexpr (is_first_arg_inst) {
func(ctx, inst, Arg<Traits::ArgType<I + 2>>(ctx, inst->Arg(I))...);
} else {
func(ctx, Arg<Traits::ArgType<I + 1>>(ctx, inst->Arg(I))...);
}
}
}
template <auto func>
void Invoke(EmitContext& ctx, IR::Inst* inst) {
using Traits = FuncTraits<decltype(func)>;
static_assert(Traits::NUM_ARGS >= 1, "Insufficient arguments");
if constexpr (Traits::NUM_ARGS == 1) {
Invoke<func, false>(ctx, inst, std::make_index_sequence<0>{});
} else {
using FirstArgType = typename Traits::template ArgType<1>;
static constexpr bool is_first_arg_inst = std::is_same_v<FirstArgType, IR::Inst*>;
using Indices = std::make_index_sequence<Traits::NUM_ARGS - (is_first_arg_inst ? 2 : 1)>;
Invoke<func, is_first_arg_inst>(ctx, inst, Indices{});
}
}
void EmitInst(EmitContext& ctx, IR::Inst* inst) {
switch (inst->Opcode()) {
#define OPCODE(name, result_type, ...) \
case IR::Opcode::name: \
return Invoke<&Emit##name>(ctx, inst);
#include "shader_recompiler/frontend/ir/opcodes.inc"
#undef OPCODE
}
throw LogicError("Invalid opcode {}", inst->Opcode());
}
Id TypeId(const EmitContext& ctx, IR::Type type) {
switch (type) {
case IR::Type::U1:
return ctx.U1;
case IR::Type::U32:
return ctx.U32[1];
default:
throw NotImplementedException("Phi node type {}", type);
}
}
void SetupDenormControl(const Profile& profile, const IR::Program& program, EmitContext& ctx,
Id main_func) {
if (!profile.support_float_controls) {
return;
}
const Info& info{program.info};
if (!info.uses_fp32_denorms_flush && !info.uses_fp32_denorms_preserve &&
!info.uses_fp16_denorms_flush && !info.uses_fp16_denorms_preserve) {
return;
}
ctx.AddExtension("SPV_KHR_float_controls");
if (info.uses_fp32_denorms_flush && info.uses_fp32_denorms_preserve) {
// LOG_ERROR(HW_GPU, "Fp32 denorm flush and preserve on the same shader");
} else if (info.uses_fp32_denorms_flush) {
if (profile.support_fp32_denorm_flush) {
ctx.AddCapability(spv::Capability::DenormFlushToZero);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 32U);
} else {
// Drivers will most likely flush denorms by default, no need to warn
}
} else if (info.uses_fp32_denorms_preserve) {
if (profile.support_fp32_denorm_preserve) {
ctx.AddCapability(spv::Capability::DenormPreserve);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 32U);
} else {
// LOG_WARNING(HW_GPU, "Fp32 denorm preserve used in shader without host support");
}
}
if (!profile.support_separate_denorm_behavior) {
// No separate denorm behavior
return;
}
if (info.uses_fp16_denorms_flush && info.uses_fp16_denorms_preserve) {
// LOG_ERROR(HW_GPU, "Fp16 denorm flush and preserve on the same shader");
} else if (info.uses_fp16_denorms_flush) {
if (profile.support_fp16_denorm_flush) {
ctx.AddCapability(spv::Capability::DenormFlushToZero);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormFlushToZero, 16U);
} else {
// Same as fp32, no need to warn as most drivers will flush by default
}
} else if (info.uses_fp16_denorms_preserve) {
if (profile.support_fp16_denorm_preserve) {
ctx.AddCapability(spv::Capability::DenormPreserve);
ctx.AddExecutionMode(main_func, spv::ExecutionMode::DenormPreserve, 16U);
} else {
// LOG_WARNING(HW_GPU, "Fp16 denorm preserve used in shader without host support");
}
}
}
} // Anonymous namespace
std::vector<u32> EmitSPIRV(const Profile& profile, Environment& env, IR::Program& program) {
EmitContext ctx{profile, program};
const Id void_function{ctx.TypeFunction(ctx.void_id)};
// FIXME: Forward declare functions (needs sirit support)
Id func{};
for (IR::Function& function : program.functions) {
func = ctx.OpFunction(ctx.void_id, spv::FunctionControlMask::MaskNone, void_function);
for (IR::Block* const block : function.blocks) {
ctx.AddLabel(block->Definition<Id>());
for (IR::Inst& inst : block->Instructions()) {
EmitInst(ctx, &inst);
}
}
ctx.OpFunctionEnd();
}
boost::container::small_vector<Id, 32> interfaces;
const Info& info{program.info};
if (info.uses_workgroup_id) {
interfaces.push_back(ctx.workgroup_id);
}
if (info.uses_local_invocation_id) {
interfaces.push_back(ctx.local_invocation_id);
}
const std::span interfaces_span(interfaces.data(), interfaces.size());
ctx.AddEntryPoint(spv::ExecutionModel::GLCompute, func, "main", interfaces_span);
const std::array<u32, 3> workgroup_size{env.WorkgroupSize()};
ctx.AddExecutionMode(func, spv::ExecutionMode::LocalSize, workgroup_size[0], workgroup_size[1],
workgroup_size[2]);
SetupDenormControl(profile, program, ctx, func);
return ctx.Assemble();
}
Id EmitPhi(EmitContext& ctx, IR::Inst* inst) {
const size_t num_args{inst->NumArgs()};
boost::container::small_vector<Id, 32> operands;
operands.reserve(num_args * 2);
for (size_t index = 0; index < num_args; ++index) {
// Phi nodes can have forward declarations, if an argument is not defined provide a forward
// declaration of it. Invoke will take care of giving it the right definition when it's
// actually defined.
const IR::Value arg{inst->Arg(index)};
Id def{};
if (arg.IsImmediate()) {
// Let the context handle immediate definitions, as it already knows how
def = ctx.Def(arg);
} else {
IR::Inst* const arg_inst{arg.Inst()};
def = arg_inst->Definition<Id>();
if (!Sirit::ValidId(def)) {
// If it hasn't been defined, get a forward declaration
def = ctx.ForwardDeclarationId();
arg_inst->SetDefinition<Id>(def);
}
}
IR::Block* const phi_block{inst->PhiBlock(index)};
operands.push_back(def);
operands.push_back(phi_block->Definition<Id>());
}
const Id result_type{TypeId(ctx, inst->Arg(0).Type())};
return ctx.OpPhi(result_type, std::span(operands.data(), operands.size()));
}
void EmitVoid(EmitContext&) {}
Id EmitIdentity(EmitContext& ctx, const IR::Value& value) {
return ctx.Def(value);
}
void EmitGetZeroFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetSignFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetCarryFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitGetOverflowFromOp(EmitContext&) {
throw LogicError("Unreachable instruction");
}
} // namespace Shader::Backend::SPIRV
|